The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301317 a(n) = (n-1)! + 1 mod n^3. 2
 0, 2, 3, 7, 25, 121, 35, 433, 226, 881, 495, 1, 676, 1233, 2701, 2049, 4420, 1, 4009, 1, 2647, 6425, 4945, 1, 626, 15393, 1, 1, 13137, 1, 21731, 1, 13069, 2041, 1, 1, 23532, 19153, 50194, 1, 14104, 1, 41237, 1, 1, 76729, 86433, 1, 1, 1, 78031, 1, 77645 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS There is no known number n > 1 for which a(n)=0. For a(n) to equal 1, (n-1)! must be divisible by n^3 which tends to be the most frequent case for large n. For example, all n which are a product of three or more distinct primes belong to this category. So do all proper powers of primes except 2^2, 2^3, 2^4, 3^2, and 5^2. Obviously, when a(n) = 1, then also A055976(n) = 1 and A301316(n) = 1. If n is prime, a(n) is divisible by n. - Robert Israel, Mar 20 2018 LINKS Stanislav Sykora, Table of n, a(n) for n = 1..10000 Wikipedia, Wilson prime FORMULA a(n) = ((n-1)! + 1) mod n^3. - Jon E. Schoenfield, Mar 18 2018 a(n) = A038507(n-1) mod A000578(n). - Michel Marcus, Mar 20 2018 EXAMPLE From Muniru A Asiru, Mar 20 2018: (Start) ((1-1)! + 1) mod 1^3 = (0! +1) mod 1 = 2 mod 1 = 0. ((2-1)! + 1) mod 2^3 = (1! +1) mod 8 = 2 mod 8 = 2. ((3-1)! + 1) mod 3^3 = (2! +1) mod 27 = 3 mod 27 = 3. ((4-1)! + 1) mod 4^3 = (3! +1) mod 64 = 7 mod 64 = 7. ((5-1)! + 1) mod 5^3 = (4! +1) mod 125 = 25 mod 125 = 25. ... (End) MAPLE seq((factorial(n-1)+1) mod n^3, n=1..60); # Muniru A Asiru, Mar 20 2018 MATHEMATICA Array[Mod[(# - 1)! + 1, #^3] &, 53] (* Michael De Vlieger, Mar 19 2018 *) PROG (PARI) a(n) = ((n-1)! + 1) % n^3; \\ Michel Marcus, Mar 18 2018 (GAP) List([1..60], n->(Factorial(n-1)+1) mod n^3); # Muniru A Asiru, Mar 20 2018 CROSSREFS Cf. A000578, A038507, A055976, A301316. Sequence in context: A094697 A095910 A074189 * A325125 A091230 A063852 Adjacent sequences:  A301314 A301315 A301316 * A301318 A301319 A301320 KEYWORD nonn AUTHOR Stanislav Sykora, Mar 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 18:49 EST 2020. Contains 338808 sequences. (Running on oeis4.)