%I #13 Aug 31 2023 09:43:20
%S 1,5,13,25,41,61,86,116,150,189,232,279,332,388,448,513,581,656,734,
%T 815,902,991,1088,1188,1290,1399,1509,1628,1750,1873,2004,2135,2276,
%U 2420,2564,2717,2869,3032,3198,3363,3538,3711,3896,4084,4270,4467,4661,4868,5078,5285,5504
%N Partial sums of A301301.
%C Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301301. - _Ray Chandler_, Aug 31 2023
%H Ray Chandler, <a href="/A301302/b301302.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 2, -2, 0, 0, 0, -1, 1).
%F From _Colin Barker_, Apr 07 2018: (Start)
%F G.f.: (1 + x)^2*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 4*x^5 + 4*x^6 + 2*x^7 + 2*x^8 + x^9 + x^12 - 2*x^13 + x^14 - x^15) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)^2).
%F a(n) = a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11) for n>12.
%F (End)
%Y Cf. A301301.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Mar 25 2018