login
A301290
Partial sums of A301289.
1
1, 5, 10, 16, 28, 42, 57, 75, 96, 122, 150, 176, 207, 245, 282, 320, 364, 410, 457, 507, 560, 618, 678, 736, 799, 869, 938, 1008, 1084, 1162, 1241, 1323, 1408, 1498, 1590, 1680, 1775, 1877, 1978, 2080, 2188, 2298, 2409, 2523, 2640, 2762, 2886, 3008, 3135, 3269, 3402, 3536
OFFSET
0,2
COMMENTS
Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301289. - Ray Chandler, Aug 31 2023
FORMULA
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 8*a(n-4) + 8*a(n-5) - 7*a(n-6) + 5*a(n-7) - 3*a(n-8) + a(n-9) for n > 9.
G.f.: (2*x^9 - 6*x^8 + 4*x^7 - 6*x^6 - 3*x^4 - 4*x^3 - 2*x - 1)/((x - 1)^3*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)). (End)
MATHEMATICA
Accumulate[LinearRecurrence[{2, -3, 4, -4, 4, -3, 2, -1}, {1, 4, 5, 6, 12, 14, 15, 18, 21, 26}, 100]] (* Harvey P. Dale, Jun 21 2024 *)
CROSSREFS
Cf. A301289.
Sequence in context: A194275 A026059 A115002 * A152234 A357997 A054514
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 23 2018
STATUS
approved