This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300873 E.g.f. A(x) satisfies: [x^n] A(x)^(n*(n+1)) = 2*n * [x^(n-1)] A(x)^(n*(n+1)) for n>=1. 3
 1, 1, 3, 43, 2041, 197721, 31094251, 7086479443, 2187876597873, 874871971357681, 438740658523346131, 269314248304239932091, 198529013874402868930153, 173067121551267519897494473, 176154202119865662835343738811, 207099741506845262022248534098531, 278645958801870115911315221474653921, 425605862347493892454320041743878801633 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to: [x^n] exp(x)^(n*(n+1)) = (n+1) * [x^(n-1)] exp(x)^(n*(n+1)) for n>=1. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 43*x^3/3! + 2041*x^4/4! + 197721*x^5/5! + 31094251*x^6/6! + 7086479443*x^7/7! + 2187876597873*x^8/8! + 874871971357681*x^9/9! + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k in A(x)^(n*(n+1)) begins: n=1: [(1), (2), 4, 52/3, 560/3, 52304/15, 4048864/45, 914958416/315, ...]; n=2: [1, (6), (24), 108, 864, 67104/5, 1601424/5, 348254352/35, ...]; n=3: [1, 12, (84), (504), 3600, 211968/5, 4273776/5, 860107104/35, ...]; n=4: [1, 20, 220, (5560/3), (44480/3), 438400/3, 20480720/9, 3534944800/63, ...]; n=5: [1, 30, 480, 5580, (55440), (554400), 6991920, 947466000/7, ...]; n=6: [1, 42, 924, 14364, 181440, (10403568/5), (124842816/5), 1922103792/5, ...]; n=7: [1, 56, 1624, 98224/3, 1566992/3, 107909312/15, (4208547616/45), (58919666624/45), ...]; ... in which the coefficients in parenthesis are related by 2 = 2*1*(1); 24 = 2*2*(6); 504 = 2*3*(84); 44480/3 = 2*4*(5560/3); 554400 = 2*5*(55440); 124842816/5 = 2*6*(10403568/5); ... illustrating that: [x^n] A(x)^(n*(n+1)) = 2*n * [x^(n-1)] A(x)^(n*(n+1)). LOGARITHMIC PROPERTY. The logarithm of the e.g.f. is the integer series: log(A(x)) = x + x^2 + 6*x^3 + 78*x^4 + 1560*x^5 + 41484*x^6 + 1361640*x^7 + 52824144*x^8 + 2355612192*x^9 + 118455668960*x^10 + ... + A300874(n)*x^n + ... PROG (PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)*(#A))); A[#A] = (2*(#A-1)*V[#A-1] - V[#A])/(#A-1)/(#A) ); EGF=Ser(A); n!*A[n+1]} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A300874, A300870, A295811, A300590, A296170, A182962. Sequence in context: A317343 A307248 A009720 * A201173 A290777 A309401 Adjacent sequences:  A300870 A300871 A300872 * A300874 A300875 A300876 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 14 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 05:36 EST 2019. Contains 329978 sequences. (Running on oeis4.)