login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300869 Odd numbers m such that sigma(x) = m has more than 1 solution. 4
31, 399, 403, 1767, 3751, 4123, 5187, 5673, 9517, 11811, 12369, 17143, 22971, 27001, 30783, 33883, 34671, 43617, 48279, 53413, 53599, 54873, 58683, 68859, 69967, 73017, 73749, 80199, 86831, 88753, 109771, 117273, 122493, 123721, 141267, 152019, 153543, 158503, 160797 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Goormaghtigh conjecture implies that 31 is the only prime in this sequence. - Jianing Song, Apr 27 2019

LINKS

Table of n, a(n) for n=1..39.

Wikipedia, Goormaghtigh conjecture

EXAMPLE

a(1) = 31 = A123523(2), the smallest odd number m for which sigma(x) = m has (at least, and also exactly) two solutions, x = 16 and x = 25.

a(56) = 347529 = A123523(3) is the smallest odd m for which sigma(x) = m has (at least, and also exactly) three solutions, x = 406^2, x = 2*319^2 and x = 489^2.

MATHEMATICA

With[{s = PositionIndex@ Array[DivisorSigma[1, #] &, 10^6]}, Keys@ KeySort@ KeySelect[s, And[OddQ@ #, Length@ Lookup[s, #] > 1] &]] (* Michael De Vlieger, Mar 16 2018 *)

PROG

(PARI) MAX=1e6; LIM=1e4; b=0; A300869=[]; for(x=1, LIM, for(i=1, 2, (s=sigma(i*x^2))>MAX && next(2); bittest(b, s\2) && (setsearch(A300869, s) || S=setunion(A300869, [s])) || b+=1<<(s\2)))

CROSSREFS

Odd terms in A159886.

Cf. A000203 (sigma), A002191, A007368.

A123523 is a subsequence, except for the initial 1.

Sequence in context: A328750 A179465 A142829 * A297019 A022691 A125443

Adjacent sequences:  A300866 A300867 A300868 * A300870 A300871 A300872

KEYWORD

nonn

AUTHOR

M. F. Hasler, following a suggestion from Altug Alkan, Mar 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:00 EST 2019. Contains 329836 sequences. (Running on oeis4.)