login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300849 Number of 6-cycles in the n-Keller graph. 4
0, 320, 103493760, 1989020096512, 18004320077137920, 119822580205402103808, 679908187040469153808384, 3502748255987493030839058432, 16926129866817207966343976976384, 78226597001366370548567920133275648, 350205926622184430366093984866429304832 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..100

Eric Weisstein's World of Mathematics, Graph Cycle

Eric Weisstein's World of Mathematics, Keller Graph

FORMULA

Terms satisfy an order-73 linear recurrence (with very large coefficients). - Eric W. Weisstein, Mar 20 2018.

a(n) = (4^(-1 + n)*(11*2^(1 + 6*n) - 4*3^n - 2^(1 + 8*n)*3^(1 + n) - 5*2^(1 + 4*n)*3^(2 + n) - 8*3^(1 + 2*n) + 19*2^(1 + 2*n)*3^(1 + 3*n) - 17*3^(1 + 4*n) - 2*3^(1 + 5*n) + 49*3^(1 + 2*n)*4^n + 5*3^(1 + 4*n)*4^n + 4^(1 + n) + 3^(2 + n)*4^(1 + n) + 3^(1 + n)*4^(2 + 3*n) + 4*7^n - 9*2^(1 + 2*n)*7^n + 3*2^(1 + 4*n)*7^n + 17*3^(1 + n)*7^n - 2^(3 + 2*n)*3^(1 + n)*7^n + 8*3^(1 + 2*n)*7^n - 35*3^(1 + 2*n)*16^n - 16^(1 + n) - 9*17^n - 103*27^n - 5*4^(1 + 2*n)*27^n - 3*49^n + 5*3^(1 + 2*n)*64^n + 183^n - 9*256^n + 1024^n))/3 - (4^(-1 + n)*n*(-3333960*61^n + 549*7^n*(-40914 + 19845*2^(1 + 2*n) - 53473*3^n) + 62769*(10*3^(3 + 4*n) - 4*27^(1 + n)*(-14 + 5*4^n) + 9^(1 + n)*(167 - 153*2^(1 + 2*n) + 15*4^(1 + 2*n)) - 2*3^n*(277 + 207*4^(1 + n) - 891*16^n + 135*64^n) + 54*(7 + 4^n + 3*4^(1 + 2*n) - 8^(1 + 2*n) + 256^n)) + 61*n*(-90*7^n*(5373 + 1400*3^n + 1296*n) + 343*(20*3^(4 + 3*n) - 10*3^(3 + 2*n)*(-23 + 9*4^n - 6*n) + 2*3^n*(1603 + 405*2^(1 + 4*n) + 1752*n + 365*n^2 - 135*4^n*(29 + 6*n)) + 27*(-51 - 15*64^n + 16*n + 51*n^2 + 6*n^3 + 5*16^n*(21 + 4*n) - 3*4^n*(25 + n*(38 + 5*n)))))))/1694763. - Eric W. Weisstein, Mar 20 2018

PROG

(PARI) \\ Requires G function from A300818

\\ this takes a few seconds per term

seq(n)={my(q2=G(n, 2, [0..3])*4, q3=G(n, 3, [0..15])*6, q4=G(n, 4, [0..63])*8, q6=G(n, 6, [0..1023])*12, diamonds=G(n, 6, apply(t->bitor(t, bitand(t, 12)<<6), [0..63]))*12);

vector(n, n, (q6[n] - (6*q4[n]*q2[n] + 3*q3[n]^2)/4^n + 6*q4[n] + 9*diamonds[n] + 7*q2[n]^3/16^n - 12*q2[n]^2/4^n - 4*q3[n] + 4*q2[n])/12)

} \\ Andrew Howroyd, Mar 16 2018

CROSSREFS

Cf. A300818 (3-cycles), A300842 (4-cycles), A300848 (5-cycles).

Sequence in context: A121011 A264063 A174778 * A261262 A308527 A268517

Adjacent sequences:  A300846 A300847 A300848 * A300850 A300851 A300852

KEYWORD

nonn

AUTHOR

Eric W. Weisstein, Mar 13 2018

EXTENSIONS

Terms a(7) and beyond from Andrew Howroyd, Mar 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 03:22 EDT 2020. Contains 336421 sequences. (Running on oeis4.)