OFFSET
0,6
COMMENTS
Also the number of 5-cycles in the complete graph K_n for n >= 1.
LINKS
F. Harary, B. Manvel, On the number of cycles in a graph, Matemat. casop. 21 (1971) 55-63, Theorem 2 for 5-cycles in complete graph.
Eric Weisstein's World of Mathematics, Complete Graph
Eric Weisstein's World of Mathematics, Graph Cycle
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
MATHEMATICA
Table[12 Binomial[n, 5], {n, 0, 20}]
12 Binomial[Range[0, 20], 5]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 12, 72}, {0, 20}]
CoefficientList[Series[12 x^5/(x - 1)^6, {x, 0, 20}], x]
PROG
(PARI) a(n) = 12*binomial(n, 5); \\ Altug Alkan, Mar 13 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Mar 13 2018
STATUS
approved