OFFSET
1,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..100
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Keller Graph
Index entries for linear recurrences with constant coefficients, signature (244, -25104, 1434176, -50448128, 1145183232, -17085018112, 167078576128, -1046232170496, 3986606260224, -8340356726784, 7305739370496).
FORMULA
a(n) = 2^(2*n - 1)*(3^(2*n + 1) - 3^(n + 1)*4^n - 7^n + 16^n + (4*3^n - 3*4^n + 3*n - 3)*n)/3. - Eric W. Weisstein, Mar 20 2018
G.f.: 64*x^3*(87 - 8648*x + 319808*x^2 - 4495488*x^3 - 11911936*x^4 + 941117440*x^5 - 8636104704*x^6 + 25777668096*x^7) / ((1 - 4*x)^3*(1 - 12*x)^2*(1 - 16*x)^2*(1 - 28*x)*(1 - 36*x)*(1 - 48*x)*(1 - 64*x)). - Colin Barker, Mar 20 2018
MATHEMATICA
Table[2^(2 n - 1) (3^(2 n + 1) - 3^(n + 1) 4^n - 7^n + 16^n + (4 3^n - 3 4^n + 3 n - 3) n)/3, {n, 20}]
LinearRecurrence[{244, -25104, 1434176, -50448128, 1145183232, -17085018112, 167078576128, -1046232170496, 3986606260224, -8340356726784, 7305739370496}, {0, 0, 5568, 805120, 77137920, 6307700736, 475634876416, 34155559059456, 2374835654098944, 161464681410592768, 10803965184146669568}, 20]
CoefficientList[Series[-64 x^2 (87 - 8648 x + 319808 x^2 - 4495488 x^3 - 11911936 x^4 + 941117440 x^5 - 8636104704 x^6 + 25777668096 x^7)/((-1 + 4 x)^3 (-1 + 12 x)^2 (-1 + 16 x)^2 (-1 + 28 x) (-1 + 36 x) (-1 + 48 x) (-1 + 64 x)), {x, 0, 20}], x]
PROG
(PARI)
G(n, k, bset)={
my(r=vector(n), m=sum(i=0, k-1, 1<<(2*i)), u=vector(1<<(2*k), i, i==1));
for(n=1, n,
my(v=vector(#u));
for(b=1, #bset,
my(d=bitxor(bset[b], bset[b]<<2), t1=bitand(d, m), t2=bitand((d>>1), m-t1));
for(i=0, #u-1,
my(k=bitor(bitor(i, t1), bitor(t2<<1, bitand(i>>1, t2))));
v[k+1] += u[i+1] ));
u = v;
r[n] = 4^n*u[#u]/(2*k) );
r
}
G(10, 3, [0..15]) \\ Andrew Howroyd, Mar 14 2018
(PARI) concat(vector(2), Vec(64*x^3*(87 - 8648*x + 319808*x^2 - 4495488*x^3 - 11911936*x^4 + 941117440*x^5 - 8636104704*x^6 + 25777668096*x^7) / ((1 - 4*x)^3*(1 - 12*x)^2*(1 - 16*x)^2*(1 - 28*x)*(1 - 36*x)*(1 - 48*x)*(1 - 64*x)) + O(x^20))) \\ Colin Barker, Mar 20 2018
(Magma) [2^(2*n-1)*(3^(2*n+1)-3^(n+1)*4^n-7^n+16^n+(4*3^n- 3*4^n+3*n-3)* n)/3: n in [1..20]]; // Vincenzo Librandi, Mar 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 13 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Mar 14 2018
STATUS
approved