login
Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Mar 13 2018 07:43:03

%S 16,512,12228,317504,8170504,210678360,5431609016,140040313680,

%T 3610578476036,93089507306720,2400074206487184,61879758443083064,

%U 1595410881716720896,41133578178529767684,1060523826917104287184

%N Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

%C Column 5 of A300804.

%H R. H. Hardin, <a href="/A300801/b300801.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 24*a(n-1) +64*a(n-2) -417*a(n-3) -1350*a(n-4) +2413*a(n-5) +8677*a(n-6) -1690*a(n-7) -17000*a(n-8) -49614*a(n-9) -97662*a(n-10) -207652*a(n-11) +295556*a(n-12) -369400*a(n-13) +631816*a(n-14) +212360*a(n-15) +1245900*a(n-16) -397516*a(n-17) +1255956*a(n-18) -1370636*a(n-19) +125796*a(n-20) -1384600*a(n-21) +1506016*a(n-22) -696320*a(n-23) +1759968*a(n-24) -740160*a(n-25) +433728*a(n-26) -331776*a(n-27) for n>29

%e Some solutions for n=5

%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0

%e ..0..1..0..0..1. .0..1..0..0..1. .0..1..0..1..0. .0..1..0..0..1

%e ..0..0..1..0..0. .1..0..1..0..0. .0..0..1..0..1. .0..0..1..0..1

%e ..1..1..0..1..0. .0..1..0..0..1. .0..1..1..0..0. .1..0..0..0..0

%e ..1..1..1..1..1. .1..0..0..1..0. .1..0..0..0..0. .1..1..0..1..0

%Y Cf. A300804.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 13 2018