login
A300761
Number of non-equivalent ways (mod D_2) to select 4 points from n equidistant points on a straight line so that no selected point is equally distant from two other selected points.
2
0, 1, 3, 6, 15, 28, 53, 87, 140, 210, 310, 434, 600, 803, 1061, 1368, 1747, 2190, 2723, 3337, 4060, 4884, 5840, 6916, 8148, 9525, 11083, 12810, 14747, 16880, 19253, 21851, 24720, 27846, 31278, 34998, 39060, 43447, 48213, 53340, 58887, 64834, 71243, 78093, 85448
OFFSET
4,3
COMMENTS
The condition of the selection is also known as "no 3-term arithmetic progressions".
A reflection of a selection is not counted. If reflections are to be counted see A300760.
LINKS
FORMULA
a(n) = (n^4 - 12*n^3 + 54*n^2 - 88*n)/48 + (n == 1 (mod 2))*(-4*n + 19)/16 + (n == 5 (mod 6))/3 + (n == 2 (mod 6))/3 + (n == 2 (mod 4))/2.
a(n) = (n^4 - 12*n^3 + 54*n^2 - 88*n)/48 + b(n) + c(n), where
b(n) = 0 for n even
b(n) = (-4*n + 19)/16 for n odd
c(n) = 0 for n == 0,1,3,4,7,9 (mod 12)
c(n) = 1/3 for n == 5,8,11 (mod 12)
c(n) = 1/2 for n == 6,10 (mod 12)
c(n) = 5/6 for n == 2 (mod 12).
From Colin Barker, Mar 15 2018: (Start)
G.f.: x^5*(1 + x + 4*x^3 + x^4 + 5*x^5) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-3) - 2*a(n-5) + 2*a(n-6) + a(n-8) - 2*a(n-10) + a(n-11) for n>14.
(End)
CROSSREFS
Sequence in context: A056278 A161625 A234848 * A069712 A076971 A103529
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Mar 15 2018
STATUS
approved