This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300736 O.g.f. A(x) satisfies: A(x) = x*(1 - x*A'(x)) / (1 - 2*x*A'(x)). 8
 1, 1, 4, 24, 184, 1672, 17296, 198800, 2499200, 33992000, 496281344, 7731823616, 127946465280, 2240485196800, 41387447564800, 804353715776000, 16408115358117888, 350584123058300928, 7831051680901885952, 182550106828365115392, 4433782438058087202816, 112031844502468602085376, 2940834866411162315849728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS O.g.f. equals the logarithm of the e.g.f. of A300735. The e.g.f. G(x) of A300735 satisfies: [x^n] G(x)^(2*n) = (n+1) * [x^(n-1)] G(x)^(2*n) for n>=1. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..200 FORMULA O.g.f. A(x) satisfies: [x^n] exp( 2*n * A(x) ) = (n + 1) * [x^(n-1)] exp( 2*n * A(x) ) for n>=1. a(n) ~ c * n! * n^3, where c = 0.0087891365985... - Vaclav Kotesovec, Mar 20 2018 EXAMPLE O.g.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 184*x^5 + 1672*x^6 + 17296*x^7 + 198800*x^8 + 2499200*x^9 + 33992000*x^10 + 496281344*x^11 + 7731823616*x^12 + ... where A(x) = x*(1 - x*A'(x)) / (1 - 2*x*A'(x)). RELATED SERIES. exp(A(x)) = 1 + x + 3*x^2/2! + 31*x^3/3! + 697*x^4/4! + 25761*x^5/5! + 1371691*x^6/6! + 97677343*x^7/7! + 8869533681*x^8/8! + 993709302337*x^9/9! + 134086553693011*x^10/10! + ... + A300735(n)*x^n/n! + ... A'(x) = 1 + 2*x + 12*x^2 + 96*x^3 + 920*x^4 + 10032*x^5 + 121072*x^6 + 1590400*x^7 + 22492800*x^8 + 339920000*x^9 + 5459094784*x^10 + ... PROG (PARI) {a(n) = my(A=x); for(i=1, n, A = x*(1-x*A')/(1-2*x*A' +x*O(x^n))); polcoeff(A, n)} for(n=1, 25, print1(a(n), ", ")) (PARI) /* [x^n] exp( 2*n * A(x) ) = (n + 1) * [x^(n-1)] exp( 2*n * A(x) ) */ {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(2*(#A-1))); A[#A] = ((#A)*V[#A-1] - V[#A])/(2*(#A-1)) ); polcoeff( log(Ser(A)), n)} for(n=1, 25, print1(a(n), ", ")) CROSSREFS Cf. A088716, A300987, A300989, A300991, A300993. Cf. A300735, A088716, A300591, A296171, A300593, A300595. Sequence in context: A197472 A152403 A111556 * A226738 A271215 A135905 Adjacent sequences:  A300733 A300734 A300735 * A300737 A300738 A300739 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 17 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 10:19 EST 2019. Contains 329953 sequences. (Running on oeis4.)