%I #22 Apr 16 2019 06:30:11
%S 0,2,8,52,472,5526,79384
%N Volumes of concertina hypercubes.
%C A concertina n-cube is a truncation of an n-cube with edge length n+1. Its volume is an even integer. (The values divided by 2 are in A300698.)
%H Tilman Piesk, <a href="https://en.wikiversity.org/wiki/Formulas_in_predicate_logic">Formulas in predicate logic</a> (Wikiversity)
%H Tilman Piesk, <a href="https://commons.wikimedia.org/wiki/File:Beige_concertina_cube;_hexagon.png">Transparent</a> and <a href="https://en.wikipedia.org/wiki/File:Predicate_logic;_3_variables;_implications_lattice;_3D_solid_with_direction_colors,_rhomb.png">solid</a> image of a concertina cube
%H Tilman Piesk, <a href="https://github.com/watchduck/concertina_hypercubes/blob/master/volume.py">Python code used to generate the sequence</a>
%e Dimension n 1, 2, 3, 4, 5, 6
%e Hypercube volume A000169(n+1) 2, 9, 64, 625, 7776, 117649
%e Cut away volume 0, 1, 12, 153, 2250, 38265
%e Remaining volume a(n) 2, 8, 52, 472, 5526, 79384
%e Example for dimension 3: The initial cube has edge length 4 and thus a volume of 64. The volume cut away is 12, so the remaining concertina cube has a volume of 52.
%Y Cf. A300698, A000169.
%K nonn,more
%O 0,2
%A _Tilman Piesk_, Mar 11 2018