login
A300696
a(n) is the number of n-place formulas in first-order logic when variables are allowed to coincide.
3
1, 2, 8, 46, 350, 3324, 37874, 503458, 7648564, 130722474, 2482437926, 51856030736, 1181704007894, 29172943488602, 775597634145192, 22093062633006326, 671280598744505190, 21671112459225274300, 740767465663838556074, 26727829360555847269034
OFFSET
0,2
COMMENTS
An example of a 3-place formula in predicate logic is Ex Ay Ez P(x,y,z). The number of different formulas when x, y, z have to be different is A000629(3) = 26. When variables are allowed to coincide that means that there are 20 more formulas like, e.g., Ex Ay P(x,x,y) or Ex P(x,x,x).
a(n) is the number of vertices in a cocoon concertina n-cube and the sum of row n in A300695, which shows the number of vertices in that structure by rank. A000629(n) by comparison is the number of vertices in the convex concertina n-cube.
The differences with A000629, i.e., the numbers of formulas with coinciding variables, are 0, 0, 2, 20, 200, 2242, 28508, 408872, 6556894, 116547952, 2277942800, ...
FORMULA
a(0) = 1, a(n) = 2 * A083355(n) for n > 0.
CROSSREFS
KEYWORD
nonn
AUTHOR
Tilman Piesk, Mar 13 2018
STATUS
approved