login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

O.g.f. A(x) satisfies: [x^n] exp( n * A(x) ) = n^2 * [x^(n-1)] exp( n * A(x) ) for n>=1.
6

%I #24 Oct 15 2018 11:03:08

%S 1,3,30,550,15375,601398,31299268,2093655600,175312873125,

%T 17987972309725,2221603804365924,325310016974127276,

%U 55749742122979646105,11056914755618659399500,2513208049272148754203200,649086459674801585681092992,189044817293654530855544266209,61671809408989968268084102641075,22399957973327602630210233608217250,9009223131975798265447660437783058050

%N O.g.f. A(x) satisfies: [x^n] exp( n * A(x) ) = n^2 * [x^(n-1)] exp( n * A(x) ) for n>=1.

%C Compare to: [x^n] exp( n * x ) = [x^(n-1)] exp( n * x ) for n>=1.

%C It is conjectured that this sequence consists entirely of integers.

%C a(n) is divisible by n*(n+1)/2 (conjecture); A300589(n) = a(n) / (n*(n+1)/2).

%H Paul D. Hanna, <a href="/A300617/b300617.txt">Table of n, a(n) for n = 1..300</a>

%F O.g.f. equals the logarithm of the e.g.f. of A300616.

%F O.g.f. A(x) satisfies: [x^n] exp(-n*A(x)) * (1 - n^2*x) = 0, for n > 0. - _Paul D. Hanna_, Oct 15 2018

%F a(n) ~ c * (n!)^2, where c = 1.685041722777551007711429045295022018562828... - _Vaclav Kotesovec_, Mar 10 2018

%e O.g.f.: A(x) = x + 3*x^2 + 30*x^3 + 550*x^4 + 15375*x^5 + 601398*x^6 + 31299268*x^7 + 2093655600*x^8 + 175312873125*x^9 + 17987972309725*x^10 + ...

%e where

%e exp(A(x)) = 1 + x + 7*x^2/2! + 199*x^3/3! + 14065*x^4/4! + 1924201*x^5/5! + 445859911*x^6/6! + 161145717727*x^7/7! + 85790577700129*x^8/8! + ... + A300616(n)*x^n/n! + ...

%e such that: [x^n] exp( n * A(x) ) = n^2 * [x^(n-1)] exp( n * A(x) ).

%e RELATED SEQUENCES.

%e The sequence A300589(n) = a(n) / (n*(n+1)/2) begins:

%e [1, 1, 5, 55, 1025, 28638, 1117831, 58157100, 3895841625, 327054041995, ...].

%e The table of coefficients in x^k/k! in exp(-n*A(x)) * (1 - n^2*x) begins:

%e n=1: [1, 0, 5, 178, 13269, 1853876, 434314705, 158024698350, ...];

%e n=2: [1, -2, 0, 248, 22976, 3416592, 822150016, 303575549440, ...];

%e n=3: [1, -6, -27, 0, 21861, 4129758, 1079984097, 415322613324, ...];

%e n=4: [1, -12, -88, -848, 0, 3286304, 1109402752, 469332346368, ...];

%e n=5: [1, -20, -195, -2650, -55675, 0, 794678425, 438768342850, ...];

%e n=6: [1, -30, -360, -5832, -161856, -6828624, 0, 293555007360, ...];

%e n=7: [1, -42, -595, -10892, -339339, -18549958, -1433676839, 0, ...]; ...

%e in which the coefficient of x^n in row n forms a diagonal of zeros.

%o (PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(#A-1)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1) ); polcoeff( log(Ser(A)), n)}

%o for(n=1, 20, print1(a(n), ", "))

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = -Vec( exp(m^1*x*Ser(A))*(1-m^2*x +x^2*O(x^m))^(1))[m+1]/m ); A[n]}

%o for(n=1, 20, print1(a(n), ", "))

%Y Cf. A300616, A300589, A296171, A300591, A300593, A300595, A300597.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Mar 10 2018