OFFSET
0,3
COMMENTS
In general, if g.f. = Product_{k>=1} 1/(1 - d^(k-1)*x^k), where d > 1, then a(n) ~ sqrt(d-1) * polylog(2, 1/d)^(1/4) * d^(n - 1/2) * exp(2*sqrt(polylog(2, 1/d)*n)) / (2*sqrt(Pi)*n^(3/4)).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
FORMULA
a(n) ~ polylog(2, 1/3)^(1/4) * 3^(n - 1/2) * exp(2*sqrt(polylog(2, 1/3)*n)) / (sqrt(2*Pi) * n^(3/4)), where polylog(2, 1/3) = 0.36621322997706348761674629...
a(n) = Sum_{k=0..n} p(n,k) * 3^(n-k), where p(n,k) is the number of partitions of n into k parts. - Ilya Gutkovskiy, Jun 08 2022
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[1/(1 - 3^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 09 2018
STATUS
approved