login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300484 a(n) = 2 * Integral_{t>=0} T_n(t/2+1) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind. 8
2, 3, 8, 29, 130, 697, 4376, 31607, 258690, 2368847, 24011832, 267025409, 3233119106, 42346123861, 596617706344, 8998126507307, 144651872924162, 2469279716419035, 44609768252582312, 850345380011532261, 17056474009400181122 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For any integer n>=0, 2 * Integral_{t=-2..2} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1..1} T_n(z)*exp(-2*z)*dz = A102761(n)*exp(2) - a(n)*exp(-2).

LINKS

Table of n, a(n) for n=0..20.

FORMULA

a(n) = Sum_{i=0..n} A127672(n,i) * A010842(i).

a(n) = A300480(2,n) = A300481(-2,n).

a(n) = Sum_{m=0..n} A156995(n,m) = 2*n*Sum_{m=0..n} binomial(2*n-m, m)*(n-m)!/(2*n-m).

PROG

(PARI) { A300484(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+2)/2)), x, 1); }

CROSSREFS

Row m=2 in A300480.

Row sums of A156995.

Cf. A102761, A300482, A300483, A300485.

Sequence in context: A006277 A186927 A177010 * A004106 A188498 A012886

Adjacent sequences:  A300481 A300482 A300483 * A300485 A300486 A300487

KEYWORD

nonn

AUTHOR

Max Alekseyev, Mar 06 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 20:36 EDT 2019. Contains 327181 sequences. (Running on oeis4.)