login
A300483
a(n) = 2 * Integral_{t>=0} T_n((t+1)/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
6
2, 2, 3, 10, 47, 256, 1610, 11628, 95167, 871450, 8833459, 98233158, 1189398050, 15578268382, 219483388403, 3310225751098, 53214450175743, 908397242172212, 16411016615547530, 312824583201360248, 6274726126933368879, 132115002152296986730, 2913432246090160413827
OFFSET
0,1
COMMENTS
For any integer n>=0, 2 * Integral_{t=-1..1} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1/2..1/2} T_n(z)*exp(-2*z)*dz = A300485(n)*exp(1) - a(n)*exp(-1).
LINKS
FORMULA
a(n) = Sum_{i=0..n} A127672(n,i) * A000522(i).
a(n) = A300480(1,n) = A300481(-1,n).
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Apr 15 2020
MAPLE
seq(2*int(orthopoly[T](n, (t+1)/2)*exp(-t), t=0..infinity), n=0..50); # Robert Israel, Mar 06 2018
MATHEMATICA
a[n_] := 2 Integrate[ChebyshevT[n, (t + 1)/2] Exp[-t], {t, 0, Infinity}];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 28 2019 *)
PROG
(PARI) { A300483(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+1)/2)), x, 1); }
CROSSREFS
Row m=1 in A300480.
Sequence in context: A338372 A376723 A153920 * A294241 A067579 A019143
KEYWORD
nonn
AUTHOR
Max Alekseyev, Mar 06 2018
STATUS
approved