login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2. 8
0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row sums of column 1,2 and 3 yields {4, 8, 16, 30, 52, ...}, in A046127.

Almost twice Pascal's triangle A028326 (up to horizontal shift), except column 0 to 3.

The polynomial P(n;x) = 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2 is a simplified version of the bracket polynomial associated with a twist knot of n half twists that is only concerned with the enumeration of the state diagrams. The simplification arises when the twist knot is thought of as a planar diagram with no crossing information at each double point. In this case, P(n;x) = x*<T>(A,B,x), where <T>(A,B,d) denotes the bracket polynomial for the n-twist knot (see links for the definition of the bracket polynomial). For example, the bracket polynomial for the trefoil (n = 2) is A^3*d^1 + 3*BA^2*d^0 + 3*AB^2*d^1 + B^3*d^2, where A and B are the "splitting variables". Then setting A = B = 1 and d = x, we obtain 3 + 4*x + x^2 (also see A299989, row 1).

REFERENCES

Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory,

Dover Publications, Inc., 2017.

LINKS

Table of n, a(n) for n=0..68.

Agnijo Banerjee, Knot theory.

Răzvan Gelca and Fumikazu Nagasato,Some results about the kauffman bracket skein module of the twist knot exterior, J. Knot Theory Ramifications 15 (2006), 1095-1106.

L. H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.

Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14: Iss. 2, Article 7 (2013).

Franck Ramaharo, Enumerating the states of the twist knot, arXiv preprint arXiv:1712.06543 [math.CO], 2017.

Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.

Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.

Alexander Stoimenow, Generating functions, Fibonacci numbers and rational knots, Journal of Algebra, Volume 310, Issue 2 (2007), 491-525.

Eric Weisstein's World of Mathematics,Bracket Polynomial.

Wikipedia, Twist knot.

FORMULA

T(n,1) = A005408(n).

T(n,2) = A014206(n).

T(n,3) = A064999(n+1).

T(n,1) + T(n,2) = A002061(n+2).

T(n,1) + T(n,3) = A046127(n+1).

T(n,2) + T(n,3) = A155753(n+1).

T(n,1) + T(n,2) + T(n,3) = A046127(n+2).

T(n,k) = A028326(n,k-1), k >= 4 and n >= k - 1.

T(n,k) = A300454(n,k-1) + 2*A300454(n,k) + A007318(n,k-1), with T(n,0) = 0.

G.f: (2*x + 2)/(1 - y*(x + 1)) + (x^3 + 2*x^2 - x - 2)/(1 - y).

EXAMPLE

The triangle T(n,k) begins

n\k  0   1    2    3     4     5     6     7     8     9    10   11   12  13 14

0:   0   1    2    1

1:   0   3    4    1

2:   0   5    8    3

3:   0   7   14    9     2

4:   0   9   22   21    10     2

5:   0  11   32   41    30    12     2

6:   0  13   44   71    70    42    14     2

7:   0  15   58  113   140   112    56    16     2

8:   0  17   74  169   252   252   168    72    18     2

9:   0  19   92  241   420   504   420   240    90    20     2

10:  0  21  112  331   660   924   924   660   330   110    22    2

11:  0  23  134  441   990  1584  1848  1584   990   440   132   24    2

12:  0  25  158  573  1430  2574  3432  3432  2574  1430   572  156   26   2

13:  0  27  184  729  2002  4004  6006  6864  6006  4004  2002  728  182  28  2

PROG

(Maxima)

P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$

T : []$

for i:0 thru 20 do

  T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$

T;

(PARI) row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);

tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

CROSSREFS

Row sums: A020707(Pisot sequences).

Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300453 ((2,n)-torus knot).

Cf. A002061, A005408, A007318, A014206, A028326, A028326, A046127, A046127, A046127, A064999, A155753, A299989, A300454, A300454.

Sequence in context: A095884 A128908 A285072 * A155112 A256130 A257566

Adjacent sequences:  A300451 A300452 A300453 * A300455 A300456 A300457

KEYWORD

nonn,tabf

AUTHOR

Franck Maminirina Ramaharo, Mar 06 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 05:04 EDT 2020. Contains 333392 sequences. (Running on oeis4.)