|
|
A300406
|
|
Primes of the form 13*2^n + 1.
|
|
3
|
|
|
53, 3329, 13313, 13631489, 3489660929, 62864142619960717084721153, 5100145160001678120616578906356228963083163798627028041729, 6779255729241169695101387251026410519979286814120235842117075415451380965612384558178346467329, 1735489466685739441945955136262761093114697424414780375581971306355553527196770446893656695635969
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For the corresponding exponents n see A032356.
|
|
LINKS
|
Table of n, a(n) for n=1..9.
Ray Ballinger, Wilfried Keller, List of primes k*2^n + 1 for k < 300.
|
|
FORMULA
|
a(n) = A168596(A032356(n)). - Michel Marcus, Mar 29 2018
|
|
MAPLE
|
a:=(n, k)->`if`(isprime(k*2^n+1), k*2^n+1, NULL):
seq(a(n, 13), n=1..316);
|
|
MATHEMATICA
|
Select[Table[13 2^n + 1, {n, 400}], PrimeQ] (* Vincenzo Librandi, Mar 06 2018 *)
|
|
PROG
|
(Magma) [a: n in [1..400] | IsPrime(a) where a is 13*2^n + 1]; // Vincenzo Librandi, Mar 06 2018
(GAP) Filtered(List([1..500], n->13*2^n + 1), IsPrime); # Muniru A Asiru, Mar 06 2018
(PARI) lista(nn) = {for(k=1, nn, if(ispseudoprime(p=13*2^k+1), print1(p, ", "))); } \\ Altug Alkan, Mar 29 2018
|
|
CROSSREFS
|
Cf. A019434, A039687, A032356, A050527, A050528, A050529, A173236, A195745, A050526, A300407, A300408.
Sequence in context: A263516 A243231 A280357 * A013542 A200917 A234630
Adjacent sequences: A300403 A300404 A300405 * A300407 A300408 A300409
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Martin Renner, Mar 05 2018
|
|
STATUS
|
approved
|
|
|
|