login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300388 The number of paths of length 11*n from the origin to the line y = 2*x/9 with unit East and North steps that stay below the line or touch it. 5

%I #36 Oct 06 2021 13:24:11

%S 1,5,345,35246,4255288,563796161,79264265868,11612106079203,

%T 1753402118587333,270965910076404428,42648418241303137766,

%U 6813002989827352100145,1101807202785456951146158,180034116076502209139781574,29677341363243548521326632028,4929368173228370040701922315332

%N The number of paths of length 11*n from the origin to the line y = 2*x/9 with unit East and North steps that stay below the line or touch it.

%C Equivalent to nonnegative walks from (0,0) to (11*n,0) with step set [1,2], [1,-9].

%H M. T. L. Bizley, <a href="/A060941/a060941.pdf">Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line</a>, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy]

%H Bryan Ek, <a href="https://arxiv.org/abs/1803.10920">Lattice Walk Enumeration</a>, arXiv:1803.10920 [math.CO], 2018.

%H Bryan Ek, <a href="https://arxiv.org/abs/1804.05933">Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics</a>, arXiv:1804.05933 [math.CO], 2018.

%F G.f. satisfies: f = f^55*t^5 + 4*f^46*t^4 - f^45*t^4 + 5*f^44*t^4 + 6*f^37*t^3 - 3*f^36*t^3 + 12*f^35*t^3 - 4*f^34*t^3 + 10*f^33*t^3 + 4*f^28*t^2 - 3*f^27*t^2 + 9*f^26*t^2 - 6*f^25*t^2 + 12*f^24*t^2 - 6*f^23*t^2 + 10*f^22*t^2 + f^19*t - f^18*t + 2*f^17*t - 2*f^16*t + 3*f^15*t - 3*f^14*t + 4*f^13*t - 4*f^12*t + 5*f^11*t + 1.

%F From _Peter Bala_, Jan 03 2019: (Start)

%F O.g.f.: A(x) = exp( Sum_{n >= 1} (1/11)*binomial(11*n, 2*n)*x^n/n ) - Bizley. Cf. A274256.

%F Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/11)*binomial(11*n-11*k, 2*n-2*k)*a(k) for n >= 1. (End)

%F The sequence defined by b(n) := [x^n] A(x)^n begins [1, 5, 715, 116213, 19954187, 3532860880, 637870220023, 116749388814357, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 5 except for p = 11 (checked up to p = 101). - _Peter Bala_, Sep 14 2021

%F a(n) ~ c * 11^(11*n) / (n^(3/2) * 2^(2*n) * 3^(18*n)), where c = 0.0304820662333129164912550234496338371466905844787974500412037592866845093... - _Vaclav Kotesovec_, Sep 16 2021

%e For n=1, the walks are EEEEEEEEENN, EEEEEEEENEN, EEEEEEENEEN, EEEEEENEEEN, EEEEENEEEEN.

%t terms = 16; f[_] = 0;

%t Do[f[t_] = f[t]^55 t^5 + 4 f[t]^46 t^4 - f[t]^45 t^4 + 5 f[t]^44 t^4 + 6 f[t]^37 t^3 - 3 f[t]^36 t^3 + 12 f[t]^35 t^3 - 4 f[t]^34 t^3 + 10 f[t]^33 t^3 + 4 f[t]^28 t^2 - 3 f[t]^27 t^2 + 9 f[t]^26 t^2 - 6 f[t]^25 t^2 + 12 f[t]^24 t^2 - 6 f[t]^23 t^2 + 10 f[t]^22 t^2 + f[t]^19 t - f[t]^18 t + 2 f[t]^17 t - 2 f[t]^16 t + 3 f[t]^15 t - 3 f[t]^14 t + 4 f[t]^13 t - 4 f[t]^12 t + 5 f[t]^11 t + 1 + O[t]^terms, {terms}];

%t CoefficientList[f[t], t] (* _Jean-François Alcover_, Dec 04 2018 *)

%t nmax = 20; CoefficientList[Series[Exp[Sum[Binomial[11*k, 2*k]*x^k/(11*k), {k, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 16 2021 *)

%Y Cf. A001764, A060941, A300386, A300387, A300389, A274256.

%K nonn,walk

%O 0,2

%A _Bryan T. Ek_, Mar 04 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 09:23 EDT 2024. Contains 371782 sequences. (Running on oeis4.)