The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300307 Number of solutions to 1 +- 3 +- 6 +- ... +- n*(n+1)/2 == 0 mod n. 4
 1, 2, 0, 4, 4, 16, 12, 32, 20, 112, 88, 384, 308, 1264, 1056, 4096, 3852, 15120, 13820, 52608, 49824, 190848, 182356, 704512, 671540, 2582128, 2475220, 9615744, 9256428, 35868672, 34636840, 134217728, 130021392, 505292976, 491156304, 1909836416, 1857282536 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..2^11 FORMULA a(2^n) = 2^A000325(n) for n>0 (conjectured). EXAMPLE Solutions for n = 7: ------------------------------ 1 +3 +6 +10 +15 +21 +28 =  84. 1 +3 +6 +10 +15 +21 -28 =  28. 1 +3 +6 +10 +15 -21 +28 =  42. 1 +3 +6 +10 +15 -21 -28 = -14. 1 +3 -6 +10 -15 +21 +28 =  42. 1 +3 -6 +10 -15 +21 -28 = -14. 1 +3 -6 +10 -15 -21 +28 =   0. 1 +3 -6 +10 -15 -21 -28 = -56. 1 -3 +6 -10 -15 +21 +28 =  28. 1 -3 +6 -10 -15 +21 -28 = -28. 1 -3 +6 -10 -15 -21 +28 = -14. 1 -3 +6 -10 -15 -21 -28 = -70. PROG (Ruby) def A(n)   ary = [1] + Array.new(n - 1, 0)   (1..n).each{|i|     it = i * (i + 1)     a = ary.clone     (0..n - 1).each{|j| a[(j + it) % n] += ary[j]}     ary = a   }   ary[(n * (n + 1) * (n + 2) / 6) % n] / 2 end def A300307(n)   (1..n).map{|i| A(i)} end p A300307(100) CROSSREFS Cf. A000079, A000217, A000325, A058498, A300190, A300218. Sequence in context: A195395 A296805 A084247 * A286606 A266587 A070692 Adjacent sequences:  A300304 A300305 A300306 * A300308 A300309 A300310 KEYWORD nonn AUTHOR Seiichi Manyama, Mar 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 21:37 EDT 2020. Contains 334690 sequences. (Running on oeis4.)