login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300280 Triangle defined by T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1), for n>=0, k = 0..n, as read by rows. 2

%I

%S 1,0,1,0,3,1,0,5,10,1,0,7,57,21,1,0,9,252,246,36,1,0,11,969,2158,710,

%T 55,1,0,13,3414,15927,10260,1635,78,1,0,15,11329,104883,122125,35085,

%U 3255,105,1,0,17,35992,637252,1273192,611130,96992,5852,136,1,0,19,110625,3647268,12057412,9199386,2321004,230972,9756,171,1,0,21,331298,19935477,106181320,124315310,47518716,7261394,492408,15345,210,1,0,23,971609,105054633,883422885,1546241270,865414802,193797618,19669302,963795,23045,253,1

%N Triangle defined by T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1), for n>=0, k = 0..n, as read by rows.

%C Is there a closed-form expression for the terms T(n,k) of this triangle?

%C Row sums form A300279, with g.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).

%H Paul D. Hanna, <a href="/A300280/b300280.txt">Table of n, a(n) for n = 0..1080, as a flattened triangle read by Rows 0..45</a>

%F T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1).

%F G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n * y^k is given by:

%F (1) A(x,y) = Sum_{n>=0} (1 + x*y * (1+x)^n)^n / 2^(n+1).

%F (2) A(x,y) = Sum_{n>=0} x^n * y^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).

%e This triangle begins:

%e 1;

%e 0, 1;

%e 0, 3, 1;

%e 0, 5, 10, 1;

%e 0, 7, 57, 21, 1;

%e 0, 9, 252, 246, 36, 1;

%e 0, 11, 969, 2158, 710, 55, 1;

%e 0, 13, 3414, 15927, 10260, 1635, 78, 1;

%e 0, 15, 11329, 104883, 122125, 35085, 3255, 105, 1;

%e 0, 17, 35992, 637252, 1273192, 611130, 96992, 5852, 136, 1;

%e 0, 19, 110625, 3647268, 12057412, 9199386, 2321004, 230972, 9756, 171, 1;

%e 0, 21, 331298, 19935477, 106181320, 124315310, 47518716, 7261394, 492408, 15345, 210, 1;

%e 0, 23, 971609, 105054633, 883422885, 1546241270, 865414802, 193797618, 19669302, 963795, 23045, 253, 1; ...

%e GENERATING FUNCTIONS.

%e G.f.: A(x,y) = Sum_{n>=0} x^n*y^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).

%e Expanding,

%e G.f.: A(x,y) = 1 + x*y*(1+x)/(2 - (1+x))^2 + x^2*y^2*(1+x)^4/(2 - (1+x)^2)^3 + x^3*y^3*(1+x)^9/(2 - (1+x)^3)^4 + x^4*y^4*(1+x)^16/(2 - (1+x)^4)^5 + x^5*y^5*(1+x)^25/(2 - (1+x)^5)^6 + x^6*y^6*(1+x)^36/(2 - (1+x)^6)^7 + ...

%e Also, due to a series identity:

%e A(x,y) = 1/2 + (1 + x*y*(1+x))/2^2 + (1 + x*y*(1+x)^2)^2/2^3 + (1 + x*y*(1+x)^3)^3/2^4 + (1 + x*y*(1+x)^4)^4/2^5 + (1 + x*y*(1+x)^5)^5/2^6 + (1 + x*y*(1+x)^6)^6/2^7 + ... + (1 + x*y * (1+x)^n)^n / 2^(n+1) + ...

%e Explicitly,

%e G.f.: A(x,y) = 1 + y*x + (y^2 + 3*y)*x^2 + (y^3 + 10*y^2 + 5*y)*x^3 + (y^4 + 21*y^3 + 57*y^2 + 7*y)*x^4 + (y^5 + 36*y^4 + 246*y^3 + 252*y^2 + 9*y)*x^5 + (y^6 + 55*y^5 + 710*y^4 + 2158*y^3 + 969*y^2 + 11*y)*x^6 + (y^7 + 78*y^6 + 1635*y^5 + 10260*y^4 + 15927*y^3 + 3414*y^2 + 13*y)*x^7 + (y^8 + 105*y^7 + 3255*y^6 + 35085*y^5 + 122125*y^4 + 104883*y^3 + 11329*y^2 + 15*y)*x^8 + ...

%e The row sums begin

%e A300279 = [1, 1, 4, 16, 86, 544, 3904, 31328, 276798, 2660564, ...],

%e and has g.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).

%e RELATED TRIANGLE.

%e The coefficients in 1/A(x,y) forms the triangle:

%e 1;

%e 0, -1;

%e 0, -3, 0;

%e 0, -5, -4, 0;

%e 0, -7, -38, -4, 0;

%e 0, -9, -208, -104, -4, 0;

%e 0, -11, -884, -1336, -202, -4, 0;

%e 0, -13, -3268, -12112, -4768, -332, -4, 0;

%e 0, -15, -11098, -89540, -75532, -12520, -494, -4, 0; ...

%o (PARI) /* Must set N to a large value for accuracy: */ N=10000;

%o {T(n,k) = round( sum(j=0,N, binomial(j+k,k) * binomial((j+k)*k,n-k) / 2^(j+k+1)*1. ) )}

%o for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))

%o (PARI) /* Faster, without precision errors: */

%o {T(n,k) = my(A = sum(m=0, n, x^m * y^m * (1+x + x*O(x^n))^(m^2) / (2 - (1+x + x*O(x^n))^m )^(m+1) )); polcoeff(polcoeff(A, n,x), k,y)}

%o for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))

%Y Cf. A300279 (row sums).

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Mar 01 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 21:40 EST 2022. Contains 358594 sequences. (Running on oeis4.)