%I #4 Mar 01 2018 07:58:07
%S 1,2,2,4,8,4,8,26,26,8,16,88,95,88,16,32,298,375,375,298,32,64,1012,
%T 1526,2030,1526,1012,64,128,3440,6198,12324,12324,6198,3440,128,256,
%U 11700,25034,71529,138215,71529,25034,11700,256,512,39804,101312,412094
%N T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
%C Table starts
%C ...1.....2......4........8.........16..........32............64.............128
%C ...2.....8.....26.......88........298........1012..........3440...........11700
%C ...4....26.....95......375.......1526........6198.........25034..........101312
%C ...8....88....375.....2030......12324.......71529........412094.........2398145
%C ..16...298...1526....12324.....138215.....1333242......12622937.......125646087
%C ..32..1012...6198....71529....1333242....20341795.....298472434......4660242199
%C ..64..3440..25034...412094...12622937...298472434....6717267728....162737578821
%C .128.11700.101312..2398145..125646087..4660242199..162737578821...6293324571337
%C .256.39804.410252.13965762.1244747820.72718129316.3942079842968.243019177909127
%H R. H. Hardin, <a href="/A300267/b300267.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1)
%F k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5)
%F k=3: [order 18] for n>19
%F k=4: [order 64] for n>66
%e Some solutions for n=5 k=4
%e ..0..1..0..1. .0..0..0..1. .0..0..0..0. .0..0..1..0. .0..0..0..0
%e ..0..0..0..1. .1..0..1..1. .1..1..1..0. .1..0..1..0. .0..1..1..1
%e ..1..0..1..1. .0..0..0..0. .0..0..0..1. .1..0..1..0. .0..1..1..1
%e ..1..0..0..1. .1..1..1..1. .1..0..1..1. .0..0..1..0. .0..1..1..1
%e ..0..1..1..0. .0..0..0..1. .1..0..0..1. .1..0..1..1. .0..0..0..0
%Y Column 1 is A000079(n-1).
%Y Column 2 is A298189.
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Mar 01 2018