login
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
1

%I #6 Mar 01 2018 07:55:55

%S 8,88,375,2030,12324,71529,412094,2398145,13965762,81253079,472851402,

%T 2752482575,16022640154,93271665191,542972865898,3160919044027,

%U 18401442719156,107125485995213,623642100886430,3630605618341821

%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Column 4 of A300267.

%H R. H. Hardin, <a href="/A300263/b300263.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A300263/a300263.txt">Empirical recurrence of order 64</a>

%F Empirical recurrence of order 64 (see link above)

%e Some solutions for n=5

%e ..0..0..1..1. .0..0..1..0. .0..1..1..1. .0..1..1..1. .0..0..1..1

%e ..1..1..0..1. .1..0..0..1. .1..1..0..0. .1..0..0..1. .0..1..0..0

%e ..0..0..1..0. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..1..0..1

%e ..1..0..1..0. .1..0..1..0. .0..1..0..0. .1..0..1..0. .0..0..1..1

%e ..0..1..1..0. .0..0..0..1. .0..1..1..1. .0..0..1..1. .1..1..1..0

%Y Cf. A300267.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 01 2018