%I #6 Mar 01 2018 07:55:55
%S 8,88,375,2030,12324,71529,412094,2398145,13965762,81253079,472851402,
%T 2752482575,16022640154,93271665191,542972865898,3160919044027,
%U 18401442719156,107125485995213,623642100886430,3630605618341821
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
%C Column 4 of A300267.
%H R. H. Hardin, <a href="/A300263/b300263.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A300263/a300263.txt">Empirical recurrence of order 64</a>
%F Empirical recurrence of order 64 (see link above)
%e Some solutions for n=5
%e ..0..0..1..1. .0..0..1..0. .0..1..1..1. .0..1..1..1. .0..0..1..1
%e ..1..1..0..1. .1..0..0..1. .1..1..0..0. .1..0..0..1. .0..1..0..0
%e ..0..0..1..0. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..1..0..1
%e ..1..0..1..0. .1..0..1..0. .0..1..0..0. .1..0..1..0. .0..0..1..1
%e ..0..1..1..0. .0..0..0..1. .0..1..1..1. .0..0..1..1. .1..1..1..0
%Y Cf. A300267.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 01 2018