%I #4 Feb 28 2018 14:19:47
%S 8,128,1651,22194,298600,4023881,54246856,731384148,9861234001,
%T 132960046732,1792718900628,24171499455083,325908051174738,
%U 4394268763240974,59248607955630411,798858184228775812
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
%C Column 4 of A300215.
%H R. H. Hardin, <a href="/A300211/b300211.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 15*a(n-1) -14*a(n-2) -59*a(n-3) -415*a(n-4) +440*a(n-5) +841*a(n-6) +857*a(n-7) -1520*a(n-8) +9609*a(n-9) +25294*a(n-10) -4843*a(n-11) -72412*a(n-12) -117953*a(n-13) -55535*a(n-14) +52555*a(n-15) +118040*a(n-16) +49470*a(n-17) -44450*a(n-18) -41445*a(n-19) -945*a(n-20) +4777*a(n-21) +1797*a(n-22) +1189*a(n-23) +156*a(n-24)
%e Some solutions for n=5
%e ..0..0..1..0. .0..0..1..0. .0..0..0..1. .0..0..0..1. .0..0..0..1
%e ..1..0..1..1. .1..0..0..1. .1..0..1..0. .0..1..0..0. .1..1..1..0
%e ..1..1..0..0. .1..0..1..0. .1..0..1..0. .0..1..1..0. .1..0..0..0
%e ..0..1..1..1. .0..1..0..1. .1..0..0..1. .0..1..0..0. .1..1..0..0
%e ..1..0..0..0. .1..1..0..0. .1..0..1..1. .0..0..0..0. .1..1..0..1
%Y Cf. A300215.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 28 2018