This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300194 Coefficients of non-constant terms of a Calabi-Yau modular form attached to 4-dimensional Dwork family. 9
 1, 4131, 51734044, 918902851011, 19562918469120126, 465569724397794578388, 11949937737349874945514840, 323968757355117803915329898691, 9154540571018908853569832253702901, 267225273114956122025822445917802760506 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The 8-tuple (1/36 + 20*A300194, -1 + 216*A300195, -1/36 + 14*A300196, -1/6 + 24*A300197, -1/72 + 2*A300198, -1/46656 * A300199, 1/36 - 2*A300200,  -1/7776 + 7/18 * A300201) gives a solution of the modular vector field R = Sum_{i=1..8} R_i d/dt_i on the enhanced moduli space arising from 4-dimensional Dwork family, where d/dt_i's give the standard basis of the tangent space in the chart (t_1,t_2,...,t_8) and R_1 = -t_1*t_2+t_3; R_2 = (-t_1^6*t_2^2+1/36*t_3^2*t_4*t_8+t_2^2*t_6)/(t_1^6-t_6); R_3 = (-3*t_1^6*t_2*t_3+1/36*t_3^2*t_5*t_8+3*t_2*t_3*t_6)/(t_1^6-t_6); R_4 = (-t_1^6*t_2*t_4-1/36*t_3^2*t_7*t_8+t_2*t_4*t_6)/(t_1^6-t_6); R_5 = (-2*t_1^6*t_3*t_4-4*t_1^6*t_2*t_5+5*t_1^4*t_3*t_8+1/36*t_3*t_5^2*t_8+ 2*t_3*t_4*t_6+4*t_2*t_5*t_6)/(2*(t_1^6-t_6)); R_6 = -6*t_2*t_6; R_7 = -18*t_1^2+1/2*t_4^2; R_8 = (-3*t_1^6*t_2*t_8+3*t_1^5*t_3*t_8+3*t_2*t_6*t_8)/(t_1^6-t_6); For more details see the Movasati & Nikdelan link Section 8.3. LINKS H. Movasati, Y. Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv:1603.09411 [math.AG], 2016-2017. See Table 2, (1/20)*t_1. H. Movasati, Foliation.lib. PROG (SINGULAR) // This program has to be compiled in SINGULAR. By changing "int iter" you can // calculate more coefficients. Note that this program is using a library calling // "foliation.lib" written by H. Movasati, which is available in the link given in // LINKS section as Foliation.lib. LIB "linalg.lib"; LIB "foliation.lib"; ring r=0, (t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, q), dp; int pm=1; number t10=1/36; number ko=1/216; number c4=ko^2; number t20=-1; number t81=49/18; number a=-6*t20; poly dis=t_1^6-t_6; poly dt1=dis*(-t_1*t_2+t_3); poly dt2=(1296*c4*t_3^2*t_4*t_8-t_1^6*t_2^2+t_2^2*t_6); poly dt3=(1296*c4*t_3^2*t_5*t_8-3*t_1^6*t_2*t_3+3*t_2*t_3*t_6); poly dt4=(-1296*c4*t_3^2*t_7*t_8-t_1^6*t_2*t_4+t_2*t_4*t_6); poly dt5=(1296*c4*t_3*t_5^2*t_8-4*t_1^6*t_2*t_5-2*t_1^6*t_3*t_4+5*t_1^4*t_3*t_8+4*t_2*t_5*t_6+2*t_3*t_4*t_6)/(2); poly dt6=dis*(-6*t_2*t_6); poly dt7=dis*((1296*c4*t_4^2-t_1^2)/(2592*c4)); poly dt8=(-3*t_1^6*t_2*t_8+3*t_1^5*t_3*t_8+3*t_2*t_6*t_8); list pose; pose=(60*ko)/(49*t10^2)*t81*q+(t10), (-162*t20*ko)/(49*t10^3)*t81*q+(t20), (-66*t20*ko)/(7*t10^2)*t81*q+(t10*t20), 16/(147*t10^2)*t81*q+(-t10)/(36*ko), 45/(49*t10)*t81*q+(-t10^2)/(12*ko), (3888*t10^3*ko)/49*t81*q, 1/(1512*t10*t20*ko)*t81*q+(-t10^2)/(1296*t20*ko^2), t81*q+(-t10^3)/(36*ko); list vecfield=dt1, dt2, dt3, dt4, dt5, dt6, dt7, dt8; list denomv=dis, dis, dis, dis, dis, dis, dis, dis; intvec upto=1, 1, 1, 1, 1, 1, 1, 1; intvec whichpow; int iter=20; int n; for (n=2; n<=iter; n=n+1){upto=n, n, n, n, n, n, n, n; whichpow=upto; pose=qexpansion(vecfield, denomv, pose, upto, upto, a); n; } 1/20*pose[1]-1/720; CROSSREFS Cf. A300195, A300196, A300197, A300198, A300199, A300200, A300201. Sequence in context: A168631 A117810 A236871 * A188254 A162003 A251650 Adjacent sequences:  A300191 A300192 A300193 * A300195 A300196 A300197 KEYWORD nonn AUTHOR Younes Nikdelan, Mar 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 19:27 EST 2019. Contains 329987 sequences. (Running on oeis4.)