login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300192 Triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n. 5
0, 0, 1, 0, 1, 2, 1, 0, 2, 6, 6, 2, 0, 3, 13, 22, 18, 7, 1, 0, 4, 23, 56, 75, 60, 29, 8, 1, 0, 5, 36, 115, 215, 261, 215, 121, 45, 10, 1, 0, 6, 52, 206, 495, 806, 938, 798, 496, 220, 66, 12, 1, 0, 7, 71, 336, 987, 2016, 3031, 3452, 3010, 2003, 1001, 364, 91 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

REFERENCES

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.

J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996.

LINKS

Table of n, a(n) for n=0..64.

P. Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.

M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.

A. M. Mathai and  P. N. Rathie, Enumeration of almost cubic maps, Journal of Combinatorial Theory, Series B, Vol 13 (1972), 83-90.

Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.

FORMULA

T(n,k) = binomial(2*n,k) + binomial(n,k-2) - binomial(n,k).

T(n,k) = T(n-1,k-1)+ T(n-1,k) + A034871(n-1,k-1), with T(n,0) = T(0,1) = 0 and T(0,2) = 1

T(n,1) = A001477(n).

T(n,2) = A143689(n).

T(n,3) = n + A002492(n-1) - A000292(n-2).

T(n,n) = A247493(n+1,n).

T(n,n+1) = n + A001791(n).

T(n,n+2) = 1 + A002694(n), n >= 2.

T(n,n+k) = binomial(2*n, n-k) = A094527(n,k), for k >= 3 and n>=k.

G.f.: 1/(1 - y*(x^2 + 2*x + 1)) + (x^2 - 1)/(1 - y*(x + 1)).

EXAMPLE

The triangle T(n, k) begins:

n\k  0  1   2    3    4     5     6     7     8     9    10   11  12  13 14

0:   0  0   1

1:   0  1   2    1

2:   0  2   6    6    2

3:   0  3  13   22   18     7     1

4:   0  4  23   56   75    60    29     8     1

5:   0  5  36  115  215   261   215   121    45    10     1

6:   0  6  52  206  495   806   938   798   496   220    66   12   1

7:   0  7  71  336  987  2016  3031  3452  3010  2003  1001  364  91  14  1

MAPLE

T := (n, k) -> binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k);

for n from 0 to 10 do seq(T(n, k), k = 0 .. max(2*n, n + 2)) od;

PROG

(Maxima)

T(n, k) := binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k)$

a : []$

for n:0 thru 10 do

  a : append(a, makelist(T(n, k), k, 0, max(2*n, n + 2)))$

a;

CROSSREFS

Row sums: A000302 (powers of 4).

Cf. A034870, A034871, A032443.

Sequence in context: A267072 A070677 A269339 * A029584 A318931 A266878

Adjacent sequences:  A300189 A300190 A300191 * A300193 A300194 A300195

KEYWORD

nonn,tabf

AUTHOR

Franck Maminirina Ramaharo, Feb 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 19:36 EDT 2019. Contains 324234 sequences. (Running on oeis4.)