login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX5 0..1 arrays with every element equal to 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 27 2018 12:17:41

%S 0,17,192,2620,50419,886940,16262433,297460457,5454615441,

%T 100139692226,1838775832727,33772164353187,620318895436140,

%U 11394299377600700,209299046583691084,3844588068009489220,70620996673429500824

%N Number of nX5 0..1 arrays with every element equal to 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Column 5 of A300175.

%H R. H. Hardin, <a href="/A300172/b300172.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A300172/a300172.txt">Empirical recurrence of order 66</a>

%F Empirical recurrence of order 66 (see link above)

%e Some solutions for n=5

%e ..0..0..1..1..0. .0..0..0..1..1. .0..0..0..1..1. .0..0..1..1..1

%e ..0..1..1..0..0. .1..0..0..1..1. .0..1..0..1..0. .0..1..1..1..1

%e ..0..0..1..0..0. .1..1..0..0..1. .1..1..0..0..0. .0..1..0..0..1

%e ..0..1..0..0..1. .0..1..1..1..1. .1..1..0..0..1. .0..1..1..0..0

%e ..1..1..1..1..1. .0..0..1..1..1. .1..1..1..1..1. .0..0..0..0..0

%Y Cf. A300175.

%K nonn

%O 1,2

%A _R. H. Hardin_, Feb 27 2018