login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX4 0..1 arrays with every element equal to 1, 2, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 25 2018 06:29:08

%S 2,13,29,112,515,2713,12669,59569,295903,1439748,6946321,33748534,

%T 164163421,796809315,3867558936,18785049041,91228838297,442968357392,

%U 2151023744989,10445663389464,50723981600714,246313304788613

%N Number of nX4 0..1 arrays with every element equal to 1, 2, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Column 4 of A300115.

%H R. H. Hardin, <a href="/A300111/b300111.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) -22*a(n-2) +50*a(n-3) -100*a(n-4) +87*a(n-5) -28*a(n-6) +185*a(n-7) -2087*a(n-8) +4007*a(n-9) -1726*a(n-10) +3795*a(n-11) -29105*a(n-12) +114870*a(n-13) -197976*a(n-14) +164388*a(n-15) -38743*a(n-16) +241083*a(n-17) -1477448*a(n-18) +2958415*a(n-19) -3733030*a(n-20) +3976582*a(n-21) -6534750*a(n-22) +11613507*a(n-23) -13103127*a(n-24) +13163030*a(n-25) -16341495*a(n-26) +27407619*a(n-27) -26545990*a(n-28) +6097709*a(n-29) +5793810*a(n-30) -4770508*a(n-31) -1436482*a(n-32) -14106740*a(n-33) +13977469*a(n-34) -5342094*a(n-35) +29552651*a(n-36) -48375324*a(n-37) +47858441*a(n-38) -22810038*a(n-39) +7904052*a(n-40) +2103556*a(n-41) +7347362*a(n-42) -13339150*a(n-43) -10775336*a(n-44) +145017*a(n-45) +10531212*a(n-46) -1184471*a(n-47) -806731*a(n-48) +431595*a(n-49) -409615*a(n-50) +100962*a(n-51) -7225*a(n-52) -27756*a(n-53) +4942*a(n-54) +1168*a(n-55) +38*a(n-56) for n>60

%e Some solutions for n=5

%e ..0..0..0..0. .0..1..1..0. .0..1..0..0. .0..1..0..0. .0..0..1..1

%e ..1..0..0..1. .0..0..1..0. .0..1..1..0. .0..1..1..1. .1..1..0..0

%e ..1..0..0..1. .0..0..1..1. .1..0..1..1. .0..1..1..0. .0..1..1..1

%e ..1..0..1..0. .1..0..1..1. .0..1..1..1. .0..1..1..0. .0..1..1..0

%e ..0..0..1..0. .0..1..0..1. .1..0..0..1. .1..0..1..0. .0..1..0..0

%Y Cf. A300115.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 25 2018