OFFSET
0,4
COMMENTS
T(n,k) is the number of state diagrams having k components of n connected summed trefoil knots.
Row sums gives A001018.
REFERENCES
V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10301 (rows 0 <= n <= 100, flattened.)
Ryo Hanaki, Pseudo diagrams of knots, links and spatial graphs, Osaka Journal of Mathematics, Vol. 47 (2010), 863-883.
Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
Carolina Medina, Jorge Ramírez-Alfonsín and Gelasio Salazar, On the number of unknot diagrams, arXiv:1710.06470 [math.CO], 2017.
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
FORMULA
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
0: 0 1
1: 0 3 4 1
2: 0 9 24 22 8 1
3: 0 27 108 171 136 57 12 1
4: 0 81 432 972 1200 886 400 108 16 1
MATHEMATICA
row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* Jean-François Alcover, Mar 16 2018 *)
PROG
(Maxima)
g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$
a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$
T : []$
for i:1 thru 11 do
T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$
T;
(PARI) T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k);
tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 03 2018
CROSSREFS
KEYWORD
tabf,easy,nonn
AUTHOR
Franck Maminirina Ramaharo, Feb 26 2018
EXTENSIONS
Typo in row 6 corrected by Jean-François Alcover, Mar 16 2018
STATUS
approved