login
A299971
Lexicographic first sequence of positive integers such that a(n) + a(n+1) has a digit 0, and no term occurs twice.
10
1, 9, 11, 19, 21, 29, 31, 39, 41, 49, 51, 50, 10, 20, 30, 40, 60, 42, 8, 2, 18, 12, 28, 22, 38, 32, 48, 52, 53, 7, 3, 17, 13, 27, 23, 37, 33, 47, 43, 57, 44, 6, 4, 16, 14, 26, 24, 36, 34, 46, 54, 55, 5, 15, 25, 35, 45, 56, 64, 66, 74, 76, 84, 86, 94, 96, 104, 97
OFFSET
1,2
COMMENTS
It happens that from a(18) = 42 on, the sequence coincides with the "nonnegative variant" A299970. Indeed, n = 18 is the first index for which the same value occurs, and {a(n), 1 <= n < 18} U {0} = {A299970(n), 0 <= n < 18}. - M. F. Hasler, Feb 28 2018
LINKS
MATHEMATICA
Nest[Append[#, Block[{k = 1}, While[Nand[FreeQ[#, k], DigitCount[k + #[[-1]], 10, 0] > 0], k++]; k]] &, {1}, 67] (* Michael De Vlieger, Feb 22 2018 *)
PROG
(PARI) a(n, f=1, d=0, a=1, u=[a])={for(n=2, n, f&&if(f==1, print1(a", "), write(f, n-1, " "a)); for(k=u[1]+1, oo, setsearch(u, k)&&next; setsearch(Set(digits(a+k)), d)&&(a=k)&&break); u=setunion(u, [a]); u[2]==u[1]+1&&u=u[^1]); a}
CROSSREFS
Cf. A299970 (analog with nonnegative terms), A299957 (analog with digit 1), A299972 .. A299979 (digit 2..9).
Cf. A299980, A299981, A299402, A299403, A298974, A298975, A299996, A299997, A298978, A298979 for the analog using multiplication: a(n)*a(n+1) has a digit 0, resp. 1, ..., resp. 9.
Sequence in context: A182391 A346465 A263722 * A090771 A329279 A372242
KEYWORD
nonn,base
AUTHOR
M. F. Hasler and Eric Angelini, Feb 22 2018
STATUS
approved