login
A299966
Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions non-singleton skew-partitions.
4
1, 0, 1, 1, 1, 1, 2, 1, 3, 3, 3, 3, 5, 5, 5, 2, 8, 5, 13, 6, 13, 10, 21, 5, 11, 18, 11, 14, 34, 15, 55, 3, 26, 33, 23, 13, 89, 59, 54, 14, 144, 38, 233, 28, 31, 105, 377, 10, 47, 31, 106, 57, 610, 23, 60, 32, 206, 185, 987, 38, 1597, 324, 91, 5, 132, 93, 2584, 111
OFFSET
1,7
COMMENTS
A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
REFERENCES
Bruce E. Sagan, The Symmetric Group, Springer-Verlag New York, 2001.
EXAMPLE
The a(25) = 11 tableaux:
1 2 3 1 2 2 1 1 3 1 1 2
1 2 3 1 3 3 2 2 3 2 3 3
.
1 2 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1
1 2 2 2 2 2 1 2 2 1 1 2 2 2 2 1 2 2
.
1 1 1
1 1 1
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
undptns[y_]:=DeleteCases[Select[Tuples[Range[0, #]&/@y], OrderedQ[#, GreaterEqual]&], 0, {2}];
eh[y_]:=If[Total[y]=!=1, 1, 0]+Sum[eh[c], {c, Select[undptns[y], Total[#]>1&&Total[y]-Total[#]>1&]}];
Table[eh[Reverse[primeMS[n]]], {n, 60}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 22 2018
STATUS
approved