

A299960


a(n) = ( 4^(2*n+1) + 1 )/5.


6



1, 13, 205, 3277, 52429, 838861, 13421773, 214748365, 3435973837, 54975581389, 879609302221, 14073748835533, 225179981368525, 3602879701896397, 57646075230342349, 922337203685477581, 14757395258967641293, 236118324143482260685, 3777893186295716170957
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

It is easily seen that 4^(2n+1)+1 is divisible by 5 for all n, since 4 = 1 (mod 5). For even powers this does not hold.
The aerated sequence 1, 0, 13, 0, 205, 0, 3277, ... is a linear divisibility sequence of order 4. It is the case P1 = 0, P2 = 5^2, Q = 4 of the 3parameter family of 4thorder linear divisibility sequences found by Williams and Guy. Cf. A007583, A095372 and A100706.  Peter Bala, Aug 28 2019


LINKS

Table of n, a(n) for n=0..18.
H. C. Williams and R. K. Guy, Some fourthorder linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 12551277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume


FORMULA

a(n) = A052539(2n+1)/5 = A015521(2n+1) = A014985(2n+1) = A007910(4n+1) = A007909(4n+1) = A207262(n+1)/5.
O.g.f.: (1  4*x)/(1  17*x + 16*x^2).  Peter Bala, Aug 28 2019


EXAMPLE

For n = 0, a(0) = (4^1+1)/5 = 5/5 = 1.
For n = 1, a(1) = (4^3+1)/5 = 65/5 = 13.


MAPLE

A299960 := n > (4^(2*n+1)+1)/5: seq(A299960(n), n=0..20);


MATHEMATICA

LinearRecurrence[{17, 16}, {1, 13}, 20] (* JeanFrançois Alcover, Feb 22 2018 *)


PROG

(PARI) A299960(n)=4^(2*n+1)\5+1


CROSSREFS

Cf. A299959 for the smallest prime factor.
Cf. A052539, A007583, A095372, A100706.
Sequence in context: A057807 A057804 A215621 * A194727 A059355 A243783
Adjacent sequences: A299957 A299958 A299959 * A299961 A299962 A299963


KEYWORD

nonn


AUTHOR

M. F. Hasler, Feb 22 2018


STATUS

approved



