The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299929 Prime numbers represented by a cyclotomic binary form f(x, y) with x and y prime numbers and 0 < y < x. 6
 7, 13, 19, 29, 37, 53, 61, 67, 79, 97, 103, 109, 127, 139, 163, 173, 199, 211, 223, 229, 277, 283, 293, 313, 349, 397, 421, 433, 439, 457, 463, 487, 541, 577, 607, 641, 643, 691, 727, 733, 739, 787, 877, 937, 997, 1009, 1031, 1063, 1093, 1327, 1373, 1423, 1447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is represented by f if f(x,y) = n has an integer solution. LINKS Etienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017. EXAMPLE 6841 = f(7,5) for f(x,y) = x^4+x^3*y+x^2*y^2+x*y^3+y^4. MATHEMATICA isA299929[n_] := If[! PrimeQ[n], Return[False],    K = Floor[5.383 Log[n]^1.161]; M = Floor[2 Sqrt[n/3]];    For[k = 3, k <= K, k++,    For[y = 1, y <= M, y++, If[PrimeQ[y], For[x = y + 1, x <= M, x++, If[PrimeQ[x],    If[n == y^EulerPhi[k] Cyclotomic[k, x/y], Return[True]]]]]]]; Return[False]]; Select[Range, isA299929] PROG (Julia) A299929list(upto) = [n for n in 1:upto if isprime(ZZ(n)) && isA299928(n)] println(A299929list(1450)) CROSSREFS Cf. A293654, A296095, A299214, A299498, A299733, A299928,  A299930, A299956, A299964. Sequence in context: A258038 A059647 A059310 * A287217 A101324 A216830 Adjacent sequences:  A299926 A299927 A299928 * A299930 A299931 A299932 KEYWORD nonn AUTHOR Peter Luschny, Feb 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 18:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)