

A299923


Denominators of successive rational approximations converging to 2*Pi from above for n >= 1, with a(1) = 1 and a(0) = 0.


1



1, 0, 1, 2, 3, 7, 60, 113, 16664, 33215, 49766, 364913, 1044973, 1725033, 14480324, 27235615, 39990906, 52746197, 65501488, 405764219, 2369083826, 9070571085, 15772058344, 22473545603, 29175032862, 35876520121, 42578007380, 49279494639, 55980981898, 62682469157, 69383956416, 76085443675, 82786930934, 89488418193
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Suggested by Henry Baker in a message to the mathfun mailing list, Mar 16 2018.


LINKS

Table of n, a(n) for n=1..32.


FORMULA

Set a(1) = 1; a(0) = 0; a(n+1) = c(n) * a(n)  a(n1), where t(0) = 2*Pi, c(n) = ceiling (t(n)), and t(n+1) = 1/(c(n)  t(n)).


EXAMPLE

The best integer overestimate of 2*Pi is 7. Between 2*Pi and 7 the rational with the smallest denominator is 13/2. Between 2*Pi and 13/2, the rational with the smallest denominator is 19/3. So a(1) = 1, a(2) = 2, a(3) = 3. [Corrected by Altug Alkan, Mar 19 2018]


CROSSREFS

Cf. A298737.
Sequence in context: A238399 A159611 A156585 * A087358 A255357 A270002
Adjacent sequences: A299920 A299921 A299922 * A299924 A299925 A299926


KEYWORD

frac,sign


AUTHOR

Allan C. Wechsler, Mar 18 2018


EXTENSIONS

More terms from N. J. A. Sloane, Mar 19 2018
a(1) = 1 and a(0) = 0 prepended by Altug Alkan, Mar 26 2018


STATUS

approved



