login
A299908
Irregular triangle read by rows: T(n,k) (n>=1, 0<=k<=n) gives winning pair of moves for the game of Concentration if there are n pairs of cards and k cards have been flipped, using 0 for NN, 1 for NO, and 2 for OO.
1
0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1
OFFSET
1,19
REFERENCES
Ian Stewart, Concentration: A Winning Strategy, Mathematical Recreations Column, Scientific American, Vol. 265 (No. 4, Oct 1991), pp. 126-128.
LINKS
Ian Stewart, Concentration: A Winning Strategy, Mathematical Recreations Column, Scientific American, Vol. 265 (No. 4, Oct 1991), pp. 126-128. [Annotated scan of just page 128]
Uri Zwick and Michael S. Paterson, The memory game, Theoretical Computer Science 110.1 (1993): 169-196.
EXAMPLE
Triangle begins:
0,1,
0,0,1,
0,1,0,1,
0,0,1,0,1,
0,1,0,1,2,1,
0,1,1,0,1,2,1,
0,1,0,1,0,1,2,1,
0,0,1,0,1,0,1,2,1,
0,1,0,1,0,1,0,1,2,1,
0,0,1,0,1,0,1,0,1,2,1,
0,1,0,1,0,1,0,1,2,1,2,1,
0,0,1,0,1,0,1,0,1,2,1,2,1,
0,1,0,1,0,1,0,1,0,1,2,1,2,1,
0,0,1,0,1,0,1,0,1,0,1,2,1,2,1,
0,1,0,1,0,1,0,1,0,1,0,1,2,1,2,1,
...
CROSSREFS
Sequence in context: A093578 A172398 A070107 * A044933 A295343 A025915
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Feb 27 2018
STATUS
approved