login
Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 21 2018 12:07:25

%S 1,42,156,1308,9682,77981,667784,5725192,49894988,436024084,

%T 3819671165,33500023708,293944562757,2579947488299,22646800053660,

%U 198806639447126,1745291213052799,15321855265489822,134511069014015019

%N Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Column 4 of A299893.

%H R. H. Hardin, <a href="/A299889/b299889.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) +16*a(n-2) -203*a(n-3) -620*a(n-4) +2225*a(n-5) +8308*a(n-6) -5727*a(n-7) -61372*a(n-8) -555*a(n-9) +229115*a(n-10) -20680*a(n-11) -1005907*a(n-12) -221976*a(n-13) +3660998*a(n-14) +3541455*a(n-15) -3006749*a(n-16) -3086643*a(n-17) +2386804*a(n-18) -13534778*a(n-19) -37704135*a(n-20) -19019838*a(n-21) +9972387*a(n-22) -9529419*a(n-23) -46779256*a(n-24) -38394683*a(n-25) +10977924*a(n-26) +20681132*a(n-27) -41068141*a(n-28) +26998202*a(n-29) +70848525*a(n-30) +33138285*a(n-31) +65899249*a(n-32) -44861274*a(n-33) -41758960*a(n-34) +68124773*a(n-35) +52543923*a(n-36) +7195475*a(n-37) -11801870*a(n-38) -13863048*a(n-39) +11531342*a(n-40) +17574135*a(n-41) -800006*a(n-42) -1498359*a(n-43) +288546*a(n-44) -1477150*a(n-45) -190816*a(n-46) +193456*a(n-47) -24872*a(n-48) +624*a(n-49) for n>51

%e Some solutions for n=5

%e ..0..0..0..0. .0..1..0..0. .0..0..1..1. .0..0..1..1. .0..0..1..1

%e ..1..0..1..0. .1..1..1..0. .1..0..1..1. .1..0..0..1. .0..0..0..1

%e ..0..0..1..1. .1..0..1..1. .1..1..0..0. .1..1..1..1. .1..1..1..0

%e ..0..0..1..1. .0..0..1..0. .0..1..0..1. .1..0..0..0. .1..0..1..0

%e ..1..0..1..0. .0..1..1..1. .0..0..0..0. .1..1..0..0. .0..0..0..0

%Y Cf. A299893.

%K nonn

%O 1,2

%A _R. H. Hardin_, Feb 21 2018