login
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 21 2018 11:49:06

%S 8,29,41,125,585,1974,6542,24545,89192,314259,1128245,4079503,

%T 14634597,52444291,188594973,678001937,2434026544,8742984292,

%U 31418755932,112865079546,405419489351,1456549048305,5232786086738,18798220721187

%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Column 4 of A299879.

%H R. H. Hardin, <a href="/A299875/b299875.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A299875/a299875.txt">Empirical recurrence of order 67</a>

%F Empirical recurrence of order 67 (see link above)

%e Some solutions for n=5

%e ..0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..0..0. .0..1..0..0

%e ..0..1..0..1. .0..1..0..0. .0..1..0..1. .0..1..0..1. .1..1..0..1

%e ..1..1..1..0. .0..1..0..0. .1..0..0..0. .1..0..0..0. .1..1..1..1

%e ..0..0..1..1. .1..0..0..1. .1..0..1..1. .0..1..0..0. .1..1..1..1

%e ..1..1..0..0. .1..0..1..0. .0..1..0..0. .0..1..0..1. .0..1..1..0

%Y Cf. A299879.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 21 2018