login
Coefficients in expansion of (E_6^2/E_4^3)^(1/18).
19

%I #17 Mar 04 2018 08:47:34

%S 1,-96,-6912,-5410944,-1537640448,-753077521728,-307254291047424,

%T -143134552425743616,-65142005576276164608,-30798673631132393592288,

%U -14628259811568672073824768,-7054762801208507859522653568

%N Coefficients in expansion of (E_6^2/E_4^3)^(1/18).

%H Seiichi Manyama, <a href="/A299856/b299856.txt">Table of n, a(n) for n = 0..367</a>

%F G.f.: (1 - 1728/j)^(1/18), where j is the j-function.

%F a(n) ~ c * exp(2*Pi*n) / n^(10/9), where c = -Gamma(1/4)^(4/9) / (2^(4/9) * 3^(35/18) * Pi^(1/3) * Gamma(8/9)) = -0.0974650059642735838539936939997471425... - _Vaclav Kotesovec_, Mar 04 2018

%F a(n) * A299950(n) ~ -sin(Pi/9) * exp(4*Pi*n) / (9*Pi*n^2). - _Vaclav Kotesovec_, Mar 04 2018

%t terms = 12;

%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];

%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];

%t (E6[x]^2/E4[x]^3)^(1/18) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 28 2018 *)

%Y (E_6^2/E_4^3)^(k/288): A289366 (k=1), A296609 (k=2), A296614 (k=3), A296652 (k=4), A297021 (k=6), A299422 (k=8), A299862 (k=9), A289368 (k=12), this sequence (k=16), A299857 (k=18), A299858 (k=24), A299863 (k=32), A299859 (k=36), A299860 (k=48), A299861 (k=72), A299414 (k=96), A299413 (k=144), A289210 (k=288).

%Y Cf. A000521 (j).

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 21 2018