login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299794 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x or 2*y is a power of 4 (including 4^0 = 1) and x + 15*y is also a power of 4. 30

%I #27 Mar 05 2018 08:27:14

%S 1,1,1,1,1,3,1,1,4,2,1,1,2,3,1,1,2,2,1,1,6,3,1,3,3,2,2,1,3,4,2,1,5,4,

%T 4,5,1,2,3,2,5,5,2,2,8,2,2,1,5,2,4,3,4,4,4,3,6,3,2,3,3,4,3,1,3,6,4,3,

%U 11,2,2,2,4,5,1,2,3,5,3,1

%N Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x or 2*y is a power of 4 (including 4^0 = 1) and x + 15*y is also a power of 4.

%C Conjecture 1: a(n) > 0 for all n > 0. Also, for any integer n > 1 we can write n^2 as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that 2*x or y is a power of 4 and also x + 15*y = 2^(2k+1) for some k = 0,1,2,....

%C Conjecture 2: Let d be 2 or 8, and let r be 0 or 1. Then any positive square n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or y is a power of 2 and x + d*y = 2^(2k+r) for some k = 0,1,2,....

%C We have verified Conjecture 1 for n up to 10^7.

%C See also A299537, A300219 and A300396 for similar conjectures.

%H Zhi-Wei Sun, <a href="/A299794/b299794.txt">Table of n, a(n) for n = 1..10000</a>

%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190.

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1701.05868">Restricted sums of four squares</a>, arXiv:1701.05868 [math.NT], 2017-2018.

%e a(2) = 1 since 2^2 = 1^2 + 1^2 + 1^2 + 1^2 with 1 = 4^0 and 1 + 15*1 = 4^2.

%e a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4 = 4^1 and 4 + 15*0 = 4^1.

%e a(19) = 1 since 19^2 = 1^2 + 0^2 + 6^2 + 18^2 with 1 = 4^0 and 1 + 15*0 = 4^0.

%e a(159) = 1 since 159^2 = 34^2 + 2^2 + 75^2 + 136^2 with 2*2 = 4^1 and 34 + 15*2 = 4^3.

%e a(1998) = 1 since 1998^2 = 256^2 + 256^2 + 286^2 + 1944^2 with 256 = 4^4 and 256 + 15*256 = 4^6.

%e a(3742) = 1 since 3742^2 = 2176^2 + 128^2 + 98^2 + 3040^2 with 2*128 = 4^4 and 2176 + 15*128 = 4^6.

%t SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];

%t Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]];

%t tab={};Do[r=0;Do[If[Pow[2y]||Pow[4^k-15y],Do[If[SQ[n^2-y^2-(4^k-15y)^2-z^2],r=r+1],{z,0,Sqrt[Max[0,(n^2-y^2-(4^k-15y)^2)/2]]}]],

%t {k,0,Log[4,Sqrt[226]*n]},{y,0,Min[n,4^(k-2)]}];tab=Append[tab,r],{n,1,80}];Print[tab]

%Y Cf. A000118, A000290, A000302, A271518, A281976, A299537, A299924, A300219, A300356, A300360, A300362, A300396.

%K nonn

%O 1,6

%A _Zhi-Wei Sun_, Mar 04 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 03:51 EDT 2024. Contains 371264 sequences. (Running on oeis4.)