This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299789 Number T(n,k) of permutations p of [n] such that min_{j=1..n} |p(j)-j| = k; triangle T(n,k), n >= 0, 0 <= k <= floor(n/2), read by rows. 7
 0, 1, 1, 1, 4, 2, 15, 8, 1, 76, 40, 4, 455, 236, 28, 1, 3186, 1648, 198, 8, 25487, 13125, 1596, 111, 1, 229384, 117794, 14534, 1152, 16, 2293839, 1175224, 146372, 12929, 435, 1, 25232230, 12903874, 1621282, 152430, 6952, 32, 302786759, 154615096, 19563257, 1922364, 112416, 1707, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Rows n = 0..21, flattened FORMULA T(n,k) = A306543(n,k) - A306543(n,k+1) for n > 0. Sum_{k=1..floor(n/2)} k * T(n,k) = A129118(n). Sum_{k=1..floor(n/2)} T(n,k) = A000166(n). Sum_{k=2..floor(n/2)} T(n,k) = A001883(n). Sum_{k=3..floor(n/2)} T(n,k) = A075851(n). Sum_{k=4..floor(n/2)} T(n,k) = A075852(n). EXAMPLE T(4,0) = 15: 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2314, 2431, 3124, 3214, 3241, 4132, 4213, 4231. T(4,1) = 8: 2143, 2341, 2413, 3142, 3421, 4123, 4312, 4321. T(4,2) = 1: 3412. T(5,2) = 4: 34512, 34521, 45123, 54123. T(6,3) = 1: 456123. T(7,3) = 8: 4567123, 4567132, 4567213, 4567231, 5671234, 5761234, 6571234, 7561234. T(8,4) = 1: 56781234. T(9,4) = 16: 567891234, 567891243, 567891324, 567891342, 567892134, 567892143, 567892314, 567892341, 678912345, 679812345, 687912345, 697812345, 768912345, 769812345, 867912345, 967812345. Triangle T(n,k) begins:           0;           1;           1,         1;           4,         2;          15,         8,        1;          76,        40,        4;         455,       236,       28,       1;        3186,      1648,      198,       8;       25487,     13125,     1596,     111,      1;      229384,    117794,    14534,    1152,     16;     2293839,   1175224,   146372,   12929,    435,    1;    25232230,  12903874,  1621282,  152430,   6952,   32;   302786759, 154615096, 19563257, 1922364, 112416, 1707, 1;   ... MAPLE b:= proc(s) option remember; (n-> `if`(n=1, x^(s[1]-1),       add((p-> add(coeff(p, x, i)*x^min(i, abs(n-j)),       i=0..degree(p)))(b(s minus {j})), j=s)))(nops(s))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b({\$1..n})): seq(T(n), n=0..14); # second Maple program: A:= proc(n, k) option remember; `if`(n=0, 0, LinearAlgebra[       Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)>=k, 1, 0))))     end: T:= (n, k)-> A(n, k)-A(n, k+1): seq(seq(T(n, k), k=0..n/2), n=0..14); MATHEMATICA A[n_, k_] := A[n, k] = If[n==0, 0, Permanent[Table[If[Abs[i-j] >= k, 1, 0], {i, 1, n}, {j, 1, n}]]]; T[n_, k_] := A[n, k] - A[n, k+1]; Table[T[n, k], {n, 0, 14}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, May 01 2019, from 2nd Maple program *) CROSSREFS Columns k=0-1 give: A002467, A296050. Row sums give A000142 (for n>0). T(2n,n) gives A057427. T(2n+1,n) gives A000079. T(2n+2,n) gives A306545. Cf. A000166, A001883, A075851, A075852, A129118, A130152, A306543. Sequence in context: A185130 A261870 A325516 * A121662 A130042 A285362 Adjacent sequences:  A299786 A299787 A299788 * A299790 A299791 A299792 KEYWORD nonn,tabf AUTHOR Alois P. Heinz, Jan 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 05:57 EDT 2019. Contains 323474 sequences. (Running on oeis4.)