%I #4 Feb 18 2018 10:30:41
%S 8,88,375,1998,11733,64703,358219,2010841,11248655,62879257,351925463,
%T 1969646529,11022486199,61689352653,345264233247,1932370500069,
%U 10815131485601,60530599812081,338780442090221,1896102910584521
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
%C Column 4 of A299753.
%H R. H. Hardin, <a href="/A299749/b299749.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A299749/a299749.txt">Empirical recurrence of order 65</a>
%F Empirical recurrence of order 65 (see link above)
%e Some solutions for n=5
%e ..0..1..1..0. .0..1..1..0. .0..1..0..0. .0..1..1..0. .0..1..0..1
%e ..0..0..0..1. .0..1..0..1. .1..1..1..1. .1..0..1..1. .0..1..0..1
%e ..0..1..0..1. .0..0..0..1. .0..0..0..0. .0..1..1..0. .0..1..1..0
%e ..1..0..1..1. .1..0..0..0. .0..1..1..1. .1..1..1..1. .1..1..1..0
%e ..0..1..1..0. .0..1..0..1. .1..1..0..0. .1..0..0..1. .0..0..1..1
%Y Cf. A299753.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 18 2018