login
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 18 2018 10:30:41

%S 8,88,375,1998,11733,64703,358219,2010841,11248655,62879257,351925463,

%T 1969646529,11022486199,61689352653,345264233247,1932370500069,

%U 10815131485601,60530599812081,338780442090221,1896102910584521

%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

%C Column 4 of A299753.

%H R. H. Hardin, <a href="/A299749/b299749.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A299749/a299749.txt">Empirical recurrence of order 65</a>

%F Empirical recurrence of order 65 (see link above)

%e Some solutions for n=5

%e ..0..1..1..0. .0..1..1..0. .0..1..0..0. .0..1..1..0. .0..1..0..1

%e ..0..0..0..1. .0..1..0..1. .1..1..1..1. .1..0..1..1. .0..1..0..1

%e ..0..1..0..1. .0..0..0..1. .0..0..0..0. .0..1..1..0. .0..1..1..0

%e ..1..0..1..1. .1..0..0..0. .0..1..1..1. .1..1..1..1. .1..1..1..0

%e ..0..1..1..0. .0..1..0..1. .1..1..0..0. .1..0..0..1. .0..0..1..1

%Y Cf. A299753.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 18 2018