%I #4 Feb 16 2018 07:44:00
%S 5,16,54,648,2850,20882,159324,1041908,7459468,53904306,375940431,
%T 2678988639,19089395160,135035259385,959911426013,6820922367039,
%U 48396544732963,343770481230580,2441462845433685,17334264880163647
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A299689.
%H R. H. Hardin, <a href="/A299685/b299685.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) +20*a(n-2) +81*a(n-3) -653*a(n-4) -1905*a(n-5) +643*a(n-6) +23079*a(n-7) +48432*a(n-8) -58518*a(n-9) -346722*a(n-10) -472191*a(n-11) +736590*a(n-12) +2550808*a(n-13) +1321038*a(n-14) -4101790*a(n-15) -7503804*a(n-16) +3021497*a(n-17) +8448688*a(n-18) -3562570*a(n-19) -11841484*a(n-20) +15048149*a(n-21) +38007941*a(n-22) -4122652*a(n-23) -77892088*a(n-24) -44675826*a(n-25) +53117546*a(n-26) +92005643*a(n-27) +31709255*a(n-28) -62292123*a(n-29) -90295223*a(n-30) -9746620*a(n-31) +70199783*a(n-32) +51756737*a(n-33) -32982903*a(n-34) -38437964*a(n-35) +11773993*a(n-36) +13043088*a(n-37) -1802183*a(n-38) -2623888*a(n-39) -627392*a(n-40) +445160*a(n-41) +293800*a(n-42) -44672*a(n-43) -29568*a(n-44) for n>46
%e Some solutions for n=5
%e ..0..0..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1. .0..0..1..1
%e ..0..0..0..0. .1..1..1..0. .0..1..1..1. .1..1..1..0. .0..0..1..1
%e ..0..1..0..0. .0..1..0..0. .0..0..1..1. .0..1..1..1. .0..0..0..0
%e ..0..0..0..0. .1..1..0..0. .1..0..1..1. .1..1..1..0. .0..0..0..0
%e ..1..0..0..0. .0..1..1..1. .1..0..1..1. .0..1..0..1. .1..0..0..1
%Y Cf. A299689.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 16 2018