%I #4 Feb 15 2018 14:49:03
%S 1,2,2,4,8,4,8,32,32,8,16,128,227,128,16,32,512,1642,1642,512,32,64,
%T 2048,11888,22087,11888,2048,64,128,8192,86123,297071,297071,86123,
%U 8192,128,256,32768,624007,4001253,7411398,4001253,624007,32768,256,512,131072
%N T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
%C Table starts
%C ...1......2........4..........8............16..............32
%C ...2......8.......32........128...........512............2048
%C ...4.....32......227.......1642.........11888...........86123
%C ...8....128.....1642......22087........297071.........4001253
%C ..16....512....11888.....297071.......7411398.......185302633
%C ..32...2048....86123....4001253.....185302633......8607101770
%C ..64...8192...624007...53909088....4634931975....400012077773
%C .128..32768..4521433..726363190..115940148451..18591844096646
%C .256.131072.32761769.9787119222.2900256951630.864147943636240
%H R. H. Hardin, <a href="/A299661/b299661.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1)
%F k=2: a(n) = 4*a(n-1)
%F k=3: [order 8]
%F k=4: [order 24]
%F k=5: [order 89]
%e Some solutions for n=5 k=5
%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
%e ..0..0..0..0..0. .0..0..1..1..0. .0..0..1..1..0. .0..1..0..0..0
%e ..1..0..0..1..0. .1..1..1..1..0. .0..0..0..1..0. .0..0..1..1..1
%e ..1..1..0..1..0. .1..1..0..0..0. .0..1..1..1..1. .0..1..1..0..0
%e ..1..1..0..1..1. .0..0..0..1..0. .0..0..0..1..0. .0..0..1..1..1
%Y Column 1 is A000079(n-1).
%Y Column 2 is A004171(n-1).
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Feb 15 2018