login
A299661
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 227, 128, 16, 32, 512, 1642, 1642, 512, 32, 64, 2048, 11888, 22087, 11888, 2048, 64, 128, 8192, 86123, 297071, 297071, 86123, 8192, 128, 256, 32768, 624007, 4001253, 7411398, 4001253, 624007, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4..........8............16..............32
...2......8.......32........128...........512............2048
...4.....32......227.......1642.........11888...........86123
...8....128.....1642......22087........297071.........4001253
..16....512....11888.....297071.......7411398.......185302633
..32...2048....86123....4001253.....185302633......8607101770
..64...8192...624007...53909088....4634931975....400012077773
.128..32768..4521433..726363190..115940148451..18591844096646
.256.131072.32761769.9787119222.2900256951630.864147943636240
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: [order 8]
k=4: [order 24]
k=5: [order 89]
EXAMPLE
Some solutions for n=5 k=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..1..1..0. .0..0..1..1..0. .0..1..0..0..0
..1..0..0..1..0. .1..1..1..1..0. .0..0..0..1..0. .0..0..1..1..1
..1..1..0..1..0. .1..1..0..0..0. .0..1..1..1..1. .0..1..1..0..0
..1..1..0..1..1. .0..0..0..1..0. .0..0..0..1..0. .0..0..1..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A316960 A299740 A316815 * A320371 A317565 A302741
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 15 2018
STATUS
approved