login
Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
1

%I #6 Feb 15 2018 14:49:58

%S 16,512,11888,297071,7411398,185302633,4634931975,115940148451,

%T 2900256951630,72550765755149,1814880621999624,45399839444130818,

%U 1135692126141775248,28409717970065456461,710678591596437046213

%N Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

%C Column 5 of A299661.

%H R. H. Hardin, <a href="/A299658/b299658.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A299658/a299658.txt">Empirical recurrence of order 89</a>

%F Empirical recurrence of order 89 (see link above)

%e Some solutions for n=5

%e ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0

%e ..0..0..1..1..1. .0..0..1..1..1. .0..0..1..1..1. .0..0..1..0..1

%e ..0..0..0..0..1. .1..0..1..1..1. .1..1..1..0..0. .1..0..1..0..0

%e ..0..1..1..0..0. .0..0..1..0..1. .0..0..0..1..1. .1..0..0..1..0

%e ..1..0..1..1..0. .0..0..1..0..0. .1..0..0..0..0. .0..1..1..0..1

%Y Cf. A299661.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 15 2018