%I #4 Feb 15 2018 14:46:27
%S 8,128,1642,22087,297071,4001253,53909088,726363190,9787119222,
%T 131873695060,1776895917925,23942305066780,322604164546039,
%U 4346843339949429,58570375761901837,789190834365996749
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A299661.
%H R. H. Hardin, <a href="/A299657/b299657.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 13*a(n-1) +12*a(n-2) -39*a(n-3) -468*a(n-4) -404*a(n-5) +675*a(n-6) +2723*a(n-7) +3026*a(n-8) +5750*a(n-9) +19747*a(n-10) +17630*a(n-11) -28280*a(n-12) -73625*a(n-13) -44638*a(n-14) +24870*a(n-15) +47548*a(n-16) +29679*a(n-17) +4247*a(n-18) -10854*a(n-19) -4557*a(n-20) -2325*a(n-21) -2645*a(n-22) -403*a(n-23) +60*a(n-24)
%e Some solutions for n=5
%e ..0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..1..0. .0..0..0..0
%e ..0..0..0..1. .0..1..1..1. .1..1..0..0. .0..1..1..1. .1..0..1..1
%e ..0..0..1..1. .1..1..0..1. .1..1..0..1. .1..0..1..0. .0..1..0..1
%e ..1..0..1..0. .0..0..0..0. .1..1..0..0. .1..0..1..1. .0..0..1..1
%e ..1..1..0..1. .0..1..0..1. .0..1..1..1. .1..1..0..0. .0..1..1..0
%Y Cf. A299661.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 15 2018