This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299631 Decimal expansion of e^(2*W(3/2)) = (9/4)/(W(3/2))^2, where W is the Lambert W function (or PowerLog); see Comments. 3
 4, 2, 7, 0, 4, 6, 4, 9, 7, 8, 3, 2, 1, 3, 8, 3, 7, 0, 5, 0, 7, 5, 4, 4, 4, 9, 4, 9, 0, 5, 7, 8, 0, 6, 6, 1, 0, 7, 3, 1, 0, 7, 9, 9, 8, 4, 3, 4, 8, 3, 6, 9, 2, 2, 6, 3, 7, 5, 5, 0, 7, 1, 2, 1, 3, 8, 1, 4, 1, 7, 9, 9, 8, 9, 8, 3, 5, 7, 6, 1, 4, 2, 2, 7, 7, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(3/2)) = (9/4)/(W(3/2))^2.  See A299613 for a guide to related constants. LINKS Eric Weisstein's World of Mathematics, Lambert W-Function EXAMPLE e^(2*W(3/2)) = 4.2704649783213837050754449... MATHEMATICA w[x_] := ProductLog[x]; x = 3/2; y = 3/2; N[E^(w[x] + w[y]), 130]   (* A299631 *) PROG (PARI) exp(2*lambertw(3/2)) \\ Altug Alkan, Mar 13 2018 CROSSREFS Cf. A299613, A299630. Sequence in context: A176385 A155829 A181051 * A205143 A266394 A286842 Adjacent sequences:  A299628 A299629 A299630 * A299632 A299633 A299634 KEYWORD nonn,cons,easy AUTHOR Clark Kimberling, Mar 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 04:17 EDT 2019. Contains 323597 sequences. (Running on oeis4.)