login
A299630
Decimal expansion of 2*W(3/2), where W is the Lambert W function (or PowerLog); see Comments.
3
1, 4, 5, 1, 7, 2, 2, 7, 1, 5, 5, 3, 2, 4, 5, 2, 5, 1, 4, 0, 9, 7, 3, 7, 8, 7, 9, 8, 5, 5, 2, 6, 1, 3, 7, 5, 9, 4, 1, 2, 3, 2, 5, 6, 9, 9, 0, 0, 8, 5, 7, 3, 9, 6, 7, 0, 3, 1, 4, 8, 0, 5, 0, 8, 5, 7, 2, 5, 2, 5, 6, 9, 5, 2, 6, 5, 9, 5, 3, 4, 6, 2, 7, 1, 0, 0
OFFSET
0,2
COMMENTS
The Lambert W function satisfies the functional equations
W(x) + W(y) = W(x*y(1/W(x) + 1/W(y)) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(3/2) = W(9/2)/(1/W(3/2)) = 2*log(3/2) - 2*log(W(3/2)). See A299613 for a guide to related sequences.
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function
EXAMPLE
2*W(3/2) = 1.451722715532452514097378798552...
MATHEMATICA
w[x_] := ProductLog[x]; x = 3/2; y = 3/2; u = N[w[x] + w[y], 100]
RealDigits[u, 10][[1]] (* A299630 *)
PROG
(PARI) 2*lambertw(3/2) \\ Altug Alkan, Mar 13 2018
CROSSREFS
Sequence in context: A069284 A272638 A365464 * A068447 A375822 A237109
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Mar 13 2018
STATUS
approved