OFFSET
0,2
COMMENTS
The Lambert W function satisfies the functional equations
W(x) + W(y) = W(x*y(1/W(x) + 1/W(y)) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(3/2) = W(9/2)/(1/W(3/2)) = 2*log(3/2) - 2*log(W(3/2)). See A299613 for a guide to related sequences.
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function
EXAMPLE
2*W(3/2) = 1.451722715532452514097378798552...
MATHEMATICA
w[x_] := ProductLog[x]; x = 3/2; y = 3/2; u = N[w[x] + w[y], 100]
RealDigits[u, 10][[1]] (* A299630 *)
PROG
(PARI) 2*lambertw(3/2) \\ Altug Alkan, Mar 13 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 13 2018
STATUS
approved