OFFSET
1,1
COMMENTS
The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(3)) = 9/(W(3))^2. See A299613 for a guide to related constants.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Lambert W-Function
EXAMPLE
e^(2*W(3)) = 8.1646820897128405910938873711...
MATHEMATICA
w[x_] := ProductLog[x]; x = 3; y = 3;
N[E^(w[x] + w[y]), 130] (* A299627 *)
RealDigits[(3/LambertW[3])^2, 10, 100][[1]] (* G. C. Greubel, Mar 06 2018 *)
PROG
(PARI) (3/lambertw(3))^2 \\ G. C. Greubel, Mar 06 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 03 2018
STATUS
approved