login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299627 Decimal expansion of e^(2*W(3)) = 9/(W(3))^2, where W is the Lambert W function (or PowerLog); see Comments. 3
8, 1, 6, 4, 6, 8, 2, 0, 8, 9, 7, 1, 2, 8, 4, 0, 5, 9, 1, 0, 9, 3, 8, 8, 7, 3, 7, 1, 1, 5, 6, 5, 4, 2, 2, 8, 7, 6, 6, 4, 4, 9, 4, 1, 9, 9, 6, 0, 4, 6, 7, 3, 7, 3, 4, 7, 7, 1, 0, 8, 1, 6, 3, 2, 1, 5, 6, 7, 1, 7, 8, 1, 2, 3, 1, 1, 7, 7, 9, 2, 3, 3, 8, 4, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Lambert W function satisfies the functional equation e^(W(x) + W(y)) = x*y/(W(x)*W(y)) for x and y greater than -1/e, so that e^(2*W(3)) = 9/(W(3))^2.  See A299613 for a guide to related constants.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Lambert W-Function

EXAMPLE

e^(2*W(3)) = 8.1646820897128405910938873711...

MATHEMATICA

w[x_] := ProductLog[x]; x = 3; y = 3;

N[E^(w[x] + w[y]), 130]   (* A299627 *)

RealDigits[(3/LambertW[3])^2, 10, 100][[1]] (* G. C. Greubel, Mar 06 2018 *)

PROG

(PARI) (3/lambertw(3))^2 \\ G. C. Greubel, Mar 06 2018

CROSSREFS

Cf. A299613, A299626.

Sequence in context: A033812 A019717 A007404 * A157697 A281785 A240982

Adjacent sequences:  A299624 A299625 A299626 * A299628 A299629 A299630

KEYWORD

nonn,cons,easy

AUTHOR

Clark Kimberling, Mar 03 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 15:02 EDT 2019. Contains 321470 sequences. (Running on oeis4.)